a2 United States Patent

Storm et al.

US009456035B2

US 9,456,035 B2
Sep. 27,2016

(10) Patent No.:
45) Date of Patent:

(54) STORING RELATED DATA IN A DISPERSED
STORAGE NETWORK

(71) Applicant: CLEVERSAFE, INC., Chicago, I,
(US)

(72) Inventors: Michael Colin Storm, Chicago, IL.
(US); Wesley Leggette, Chicago, 1L
(US); Manish Motwani, Chicago, IL.
(US); Greg Dhuse, Chicago, IL (US);
Jason K. Resch, Chicago, IL (US);
Andrew Baptist, Mt. Pleasant, WI (US)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 124 days.

(21) Appl. No.: 14/215,542
(22) Filed: Mar. 17, 2014

(65) Prior Publication Data
US 2014/0330921 A1 Now. 6, 2014

Related U.S. Application Data
(60) Provisional application No. 61/819,039, filed on May

3,2013.
(51) Int. CL
GOGF 13/00 (2006.01)
HO4L 29/08 (2006.01)
GOGF 11/10 (2006.01)
(52) US.CL

CPC ... HO4L 67/1097 (2013.01); GOGF 11/1092
(2013.01); GO6F 2211/1028 (2013.01)

(58) Field of Classification Search
CPC .. GO6F 3/04883; GOGF 3/017; GOG6F 3/0481;
GOG6F 3/0488; GO6F 17/30902; GO6F

2203/04807; HO3M 13/116; HO3M 13/1111;

HO3M 13/1137; HO4L 1/0041; HO4L 1/0057,

HO04L 29/08072; HO4L 29/06

USPC coovivveeeiienee 709/213; 714/752; 715/863
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,092,732 A 5/1978 Ouchi
5,454,101 A 9/1995 Mackay et al.
5485474 A 1/1996 Rabin

(Continued)
OTHER PUBLICATIONS

International Search Report and Written Opinion; International
Application No. PCT/US14/35528; Sep. 25, 2014; 7 pgs.

(Continued)

Primary Examiner — Robert B Harrell
(74) Attorney, Agent, or Firm — Garlick & Markison;
Timothy W. Markison

(57) ABSTRACT

A method begins by each of a group of write requesting
modules of a dispersed storage network (DSN) generating
one or more sets of write requests regarding one of a group
of portions of related data, sending a group of the one or
more sets of write requests to DSN memory, and sending
binding information to a binding module. The method
continues with the binding module processing remaining
phases of the group of the one or more sets of write requests
for writing the related data into the DSN memory as a single
set of write requests and notifying the write requesting
modules of status of the writing the related data into the
DSN memory at completion of the processing of the remain-
ing phases such that the related data is made accessible as a
single piece of data when the processing of the remaining
phases is successful.

16 Claims, 54 Drawing Sheets

user device 12

DST processing unit 16

computing core 26

DST client
module 34

data 40 &for task

computing core 26 request 38

DST client
module 34

computing
core 26

[interfacez2 | [

interface 32

1
] [interface 30 }

interface 30

user device 14

network 24

interface 33

computing
core 26

DSTN managing
unit 18

DST execution
unit

computing
core 28

.oo DST execution

unit 36

DST integrity
processing unit 20

distributed storage &/or
task network (DSTN) module 22

distributed computing system 10

US 9,456,035 B2
Page 2

(56)

5,774,643
5,802,364
5,809,285
5,890,156
5,987,622
5,991,414
6,012,159
6,058,454
6,128,277
6,175,571
6,192,472
6,256,688
6,272,658
6,301,604
6,356,949
6,366,995
6,374,336
6,415,373
6,418,539
6,449,688
6,567,948
6,571,282
6,609,223
6,718,361
6,760,808
6,785,768
6,785,783
6,826,711
6,879,596
7,003,688
7,024,451
7,024,609
7,080,101
7,103,824
7,103,915
7,111,115
7,140,044
7,146,644
7,171,493
7,222,133
7,240,236
7,272,613
7,636,724
2002/0062422
2002/0166079
2003/0018927
2003/0037261
2003/0065617
2003/0084020
2004/0024963
2004/0122917
2004/0215998
2004/0228493
2005/0100022
2005/0114594
2005/0125593
2005/0131993
2005/0132070
2005/0144382
2005/0229069
2006/0047907
2006/0136448
2006/0156059
2006/0224603
2007/0079081
2007/0079082
2007/0079083

References Cited

U.S. PATENT DOCUMENTS

A
A
A
A
A
A
A
A

A

Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl

Bl
Bl
B2
Bl
Bl
Bl
B2
B2
B2
B2
Bl
Bl
B2
B2
Bl
B2
B2
B2
B2
B2
B2
Bl
B2
B2
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

6/1998
9/1998
9/1998
3/1999
11/1999
11/1999
1/2000
5/2000
10/2000
1/2001
2/2001
7/2001
8/2001
10/2001
3/2002
4/2002
4/2002
7/2002
7/2002
9/2002
5/2003
5/2003
8/2003
4/2004
7/2004
8/2004
8/2004
11/2004
4/2005
2/2006
4/2006
4/2006
7/2006
9/2006
9/2006
9/2006
11/2006
12/2006
1/2007
5/2007
7/2007
9/2007
12/2009
5/2002
11/2002
1/2003
2/2003
4/2003
5/2003
2/2004
6/2004
10/2004
11/2004
5/2005
5/2005
6/2005
6/2005
6/2005
6/2005
10/2005
3/2006
6/2006
7/2006
10/2006
4/2007
4/2007
4/2007

Lubbers et al.
Senator et al.
Hilland
Rekieta et al.
Lo Verso et al.
Garay et al.
Fischer et al.
Gerlach et al.
Bruck et al.
Haddock et al.
Garay et al.
Suetaka et al.
Steele et al.
Nojima
Katsandres et al.
Vilkov et al.
Peters et al.
Peters et al.
Walker

Peters et al.
Steele et al.
Bowman-Amuah
Wolfgang
Basani et al.
Peters et al.
Peters et al.
Buckland
Moulton et al.
Dooply
Pittelkow et al.
Jorgenson
Wolfgang et al.
Watson et al.
Halford
Redlich et al.
Peters et al.
Redlich et al.
Redlich et al.
Shu et al.
Raipurkar et al.
Cutts et al.
Sim et al.

de la Torre et al.

Butterworth et al.

Ulrich et al.
Gadir et al.
Meffert et al.
Watkins et al.
Shu

Talagala et al.
Menon et al.
Buxton et al.
Ma et al.
Ramprashad
Corbett et al.
Karpoff et al.
Fatula, Jr.
Redlich et al.
Schmisseur
Hassner
Shiga et al.
Cialini et al.
Kitamura
Correll, Ir.
Gladwin et al.
Gladwin et al.
Gladwin et al.

2007/0088970 Al 4/2007 Buxton et al.
2007/0174192 Al 7/2007 Gladwin et al.
2007/0214285 Al 9/2007 Au et al.
2007/0234110 A1 10/2007 Soran et al.
2007/0250672 Al 10/2007 Stroberger et al.
2007/0283167 Al 12/2007 Venters, III et al.
2009/0094251 Al 4/2009 Gladwin et al.
2009/0094318 Al 4/2009 Gladwin et al.
2010/0023524 Al 1/2010 Gladwin et al.
2011/0307841 Al 12/2011 Boldyrev et al.
2013/0086442 Al 4/2013 Baptist et al.

OTHER PUBLICATIONS

Shamir; How to Share a Secret; Communications of the ACM; vol.
22, No. 11; Nov. 1979; pp. 612-613.

Rabin; Efficient Dispersal of Information for Security, Load Bal-
ancing, and Fault Tolerance; Journal of the Association for Com-
puter Machinery; vol. 36, No. 2; Apr. 1989; pp. 335-348.

Chung; An Automatic Data Segmentation Method for 3D Measured
Data Points; National Taiwan University; pp. 1-8; 1998.

Plank, T1: Erasure Codes for Storage Applications; FAST2005, 4th
Usenix Conference on File Storage Technologies; Dec. 13-16, 2005;
pp. 1-74.

Wildi; Java iSCSi Initiator; Master Thesis; Department of Computer
and Information Science, University of Konstanz; Feb. 2007; 60
pgs.

Legg; Lightweight Directory Access Protocol (LDAP): Syntaxes
and Matching Rules; IETF Network Working Group; RFC 4517,
Jun. 2006; pp. 1-50.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Interna-
tionalized String Preparation; IETF Network Working Group; RFC
4518; Jun. 2006, pp. 1-14.

Smith; Lightweight Directory Access Protocol (LDAP): Uniform
Resource Locator; IETF Network Working Group; RFC 4516; Jun.
2006; pp. 1-15.

Smith; Lightweight Directory Access Protocol (LDAP): String
Representation of Search Filters; IETF Network Working Group;
RFC 4515; Jun. 2006; pp. 1-12.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Direc-
tory Information Models; IETF Network Working Group; RFC
4512; Jun. 2006, pp. 1-49.

Sciberras; Lightweight Directory Access Protocol (LDAP): Schema
for User Applications; IETF Network Working Group; RFC 4519,
Jun. 2006; pp. 1-33.

Harrison; Lightweight Directory Access Protocol (LDAP): Authen-
tication Methods and Security Mechanisms; IETF Network Work-
ing Group; RFC 4513; Jun. 2006; pp. 1-32.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Techni-
cal Specification Road Map; IETF Network Working Group; RFC
4510; Jun. 2006; pp. 1-8.

Zeilenga; Lightweight Directory Access Protocol (LDAP): String
Representation of Distinguished Names; IETF Network Working
Group; RFC 4514; Jun. 2006; pp. 1-15.

Sermersheim; Lightweight Directory Access Protocol (LDAP): The
Protocol; IETF Network Working Group; RFC 4511; Jun. 2006; pp.
1-68.

Satran, et al.; Internet Small Computer Systems Interface (iSCSI);
IETF Network Working Group; RFC 3720; Apr. 2004; pp. 1-257.
Xin, et al.; Evaluation of Distributed Recovery in Large-Scale
Storage Systems; 13th IEEE International Symposium on High
Performance Distributed Computing; Jun. 2004; pp. 172-181.
Kubiatowicz, et al.; OceanStore: An Architecture for Global-Scale
Persistent Storage; Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.

US 9,456,035 B2

Sheet 1 of 54

Sep. 27, 2016

U.S. Patent

D1 wajsAs Bunndwos panguisip

ZZ 2Inpow (N1SQ) somjau ysej

02 Jun Buissasoud

I I
_ loyg ebelio)s panqguisip I AMBeyul 18Q
} 'Ol _ | —
[— — I 9¢ 200
| gg jun PP o¢un | @CESQEOO
| uonnaaxs 183 uoljnoaxe 18Q [i
_ 7 K I H
— | _ TF aoeLOUl
gl nun K
Buibeuew N1SQ
0¢ 9109
Bupndwos
TT ooelolul |e v/lru\vlmmo\ém:

|, ©0IABP Josn

T 00ROl [«

»

9z 9102
Bunndwos

3¢ 15onbal
yse) Jorg Op elep

g

0% 888Ul _ _

y
Z¢ soepaU|

\ 4

!

!

¥ 9|npow
uRip 1sd

Z 2400 Buindwos

97 1un Buisseooud [SQ

€ soepsul

A 4

¥ 9npoLu
Julp 1Sd

9¢ 2409 Bunndwod

| 90IADP Josn

US 9,456,035 B2

Sheet 2 of 54

Sep. 27, 2016

U.S. Patent

[AD]E
r-r- —-—r-—Hm—mm——-—=-——=--"-------"--"--"-"-"""""-"-"-"-"--"-"-"-"""F"F"F""=-"-"-"""-""""-—"—"—-—- |
| |
9/ 9|npow ¥7 8|npow 77 d|npow adepsiul 07 9|npow 89 s|npow 99 s|npow
9ENS)UI N1SA SJeLLI OH ysej BIELS)UI YoMBU S0ELBIU! YEH S0BHSIUI SN
A _ h ﬁ ﬁ A F

| I
| I
“ ﬁ VY VvV ﬁ "
" 8G eoepolUl [0d 7 s0ig |
| 3 {[e)] I
| 1 [
“ Y A 4 J— 8IN00 "
| 9G Jalionuod | .| 09 soepaul ¢g enpoul |
| ol < > ol > aoelsU| |
| - 901A3p QI [
| I
|

| _] _ |
| ¥4 R 4 P 0G 3npow I
| Aiowsw ulew "] Jgjonuod Aowsw | T Buissaoo.d I
| I
| , I
! v |
I TG Jun Buissaso.d |
| soiydelb oapia I
| I
I v I
| e Szowobundue,

US 9,456,035 B2

Sheet 3 of 54

Sep. 27, 2016

U.S. Patent

U# Jiun uonoaxe 1Sa

m !
| [}
| |
! “
! 06 8npow ¥€ 8npow '
' | uomnoexe 1@ Juslp 1Sd m
[}

! |
| 1
| [}
! “
I - — 78 s|npolu i
m 33 Aowaw 3 Ja||oju00 Buissa00id m
! i
rldnlll |||||||||||||||||||||||||||||||||||| |

U (shnsau |eJed
U# $01|S peAsLIa)
U yse} [eled
u# dneub 818
\# (shinsal [erpe X TZ Y IOMgOU
i un L# SO0S POAdLIID
uopnosaxe 18Q
| # fse} [eed

L# dnoub aoys

€ Ol

[}
201 “
synses jensed |

001
S30I|S paAdLa)

78 Buissaooud
1Sd punoqui

A/ 1SQ punogino

08 Puissaosoud

US 9,456,035 B2

Sheet 4 of 54

Sep. 27, 2016

U.S. Patent

Ug Jlun
UOINJ9Xa

18d

u# dnoJb 8o1|s

08 buisseooud] SQ punogino

A

A

L#3un
uoNNJ9Xa

18d

U# XSe)

|# %SE)

L# dnoJb 801|s

6 Syise} [elued

ar1 8npow
|0JU0D YSE)
psinquisip

h

09}

Y11 Joosjes

&

|04JU0D

311 9npow
[0JJU0D

09}

|0JU0D

A 4

0

(e

T [0Ju00

Y

Buidno.b

96 sbuidno.b soyis

711 Buipoous
Jous gQq

”

oIt
Buiuonied
Elep

—T

<1 uoiyed ejep

Jad $921|s papoous

\

0CT suonjyed ejep

¥6 ¥se)

26 elep

US 9,456,035 B2

Sheet 5 of 54

Sep. 27, 2016

U.S. Patent

G "old

SjuN 1SQ 8Anoadsal
0] sysey |enJed Buipuodsauiod
pue sBuidneib 891|s puss

¢l

JE— A

siojoweled Buisseoold ejep

pue s)iun | S 8Y) Uo paseq
Buiuonnted yse) sulw.alep

el

Syse)
yed aonpoud 0} Buluoiiped ysey

aY] Uo poeseq (s)yse) ay) uonied

— A

cel

el

— A

SjuN 1§Q o Jequinu ayj uo
paseq ejep oy} Jo Sio}weled
Buissaooud aujwlslep

0}
90

sbuidnolb 801|s 8anpoud
slejoweled Buisseooid ay) yim
uepJoose U elep sy} Buisseooid

—_— A

0cl

a A

(s)sey sy) Joddns 0y spun
1SQ Jo Jequinu e sulw.s}ep

A

gl

(s)yse) buipuodseuiod
E pue Ejep aAIgdal

¢l

US 9,456,035 B2

Sheet 6 of 54

Sep. 27, 2016

U.S. Patent

9 'Ol4
8G] ejep
paposus 0G| elep $G] sjuswbes
paol|s papooud paInodes
.. \
Z17 Buiposus Jols §Q m
ot W — m
Buisseooid 12N 9] Buipoous | Buisseooid 6 wmwwwo d “
Ajnoas Buiols Jolo - Alnoss u 5 !
99Is Jad Juswbos JuSUIDes
A 2 x A
72} uoned 091 104u09 m AN
ejep Jad se0l|s —_— — — uonied eje
EJEp POpPOoUS 091 |o4u0d | gTT snpow 091 103U0d syuswbes ejep W P
|04u02
091 [04u0d 097, (040D

US 9,456,035 B2

Sheet 7 of 54

Sep. 27, 2016

U.S. Patent

g Juswbes ejep 9 juswbes ejep ¥ Juswbhas ejep Z Wuswbas ejep £°91
gop | [vwp [evp | [2w | 1o || ovp | 6co || aep | zep || oep [cep || vep | e || zep | sep
oce | | 6zp | szp || zzp | 9zo || szp | vap || eap | cep || e | oze | [e [ap || 2p | aip
gip [[wp [e [[[1 || o | 6p g | 2p o | s | P e | 1w

/ Juawbas ejep G Juswbas ejep ¢ Juswbhas ejep | Juswbas ejep
N
[svp | wwp [svp | 2o | 10 | obp | 6cp | ocp | zep | ocp [sep | wep [cep | zep | 1ep |
| ocp | 62 | szp | 2zp | 9zp | szp | vep | eop [zzp | 1ep [ozp | 6P [sip | 210 | 9ip |
lsip [wp e |ap [wp|ar |60 [oo [2p] o[| ||| 1p]
sop | wop | evp | zop | Lo =T sjuelBes ElEp
ovp | eep | sep | zep | oep
gep | vep | eep | zep | Lep
ocp | 6zp | sz | zep | 9ep 7T .
gzp | vep [cop | 2o | 1ep Buisseooid fe— _owwwv
ozp | 6w | sip [ip | aip Juswbos
sip [wp [e |z | Lip
ow | 60 | g0 | o | op -
Gp 144 £p P P ucped eep

021 uonied ejep

US 9,456,035 B2

Sheet 8 of 54

Sep. 27, 2016

U.S. Patent

8 ‘Ol
| 778s3 1853 | cvpgsa | ocpgsa | cipgsa | 8#IuewDos.ioj saojs Ejep paposUs Jojes
| 7es3 1S3 | 96956P €50 | 12802P €50 | 99ep £5q | S 1uaWB9S 10 S0y Blep papoous 0 13
| 7zs3 17253 | vewecp 2Sa | 61981P 2SA | y9epgsq | c#Iuswdas Joj sdlis Eep pepoous Jo jes
_ AN l 153 _Nmfmcémo_tg%émo_ Z81P 1Sd _ L# JusLUBes J0) $90IS B)RP POPOLD JO Jes
91 o9 p 9pT Buipoous o1
[0Juod Buiols lowe [oquoo
AN
9 uswBas elep 9 uswbas elep ¥ Wuswbas elep Z Wuswbas elep
op | [wwp | evp | [awp | wop || owp [eep || 8ep | zep | | oep | sep | [vep | eep | | zep | uep
ocp | [6zp | szp || zzp | 9z || sep | wep || eep [zep | | vep [oze | [ep | ap || 20 | aup
sip | [wp [etp | [ap | p || op | 6P g | o | op w | ep e | w

J Juswbas ejep

G Juswbos ejep

£ Juswbas ejep

| Juswbos ejep

US 9,456,035 B2

Sheet 9 of 54

Sep. 27, 2016

U.S. Patent

7es3a | | 178s3 | ovpesa | | oepesa | | sipesa | 6 'Ol
[J [[] ® []
® ® [J o [J
[] L] [J [] [J
7es3 | [1esd | ocwsepesa | | 1zsoepesa| | osspesa |
7esa | | 1zsd | vemecozsa | | evspzsa| | weerzsa |
7183 | [1s3 [zesiepisa | | zisapisa| | zsipisa |
G# 150 0) p# 150 0) £# 150 0) 2% 1500) /#1580 0)
96 sbuidnoub aoys un"\/
FIT Jopses T Ta
Buidno.f 09 108U
VAN
| 7 os3 1 gs3 | swesa | ospesa | sipgsa |
[]
®
|]
| 7esT L es3 | 9ewvaep esa | 1zmoze esa | oscp esa | 7=
uoniJed ejep o}
| 77es3 17253 | veveepzsa | 6198lpTzsa | veepTzsg | SeOUS papoous
| 71s3 17153 | zesiepTisa | zimopTisa | zeipisa |

US 9,456,035 B2

Sheet 10 of 54

Sep. 27, 2016

U.S. Patent

GIUNX3 1SA yIuNX3 L1Sd €IuNX31Sa cWunx3 Lsd Lwnx31sd

(Ounyo ejep (uoed (uoped (Ounyo ejep | (uny ejep
snonfijuod) | Joj | eyep 03} | JoiZzelep D3} | snonbjpuod) | snonbijuoa)
17X ¥ X g X £X 7 X
dnoub 89118 dnoub 80118 dnoub 8018 dnoub 82118 dnoub 89118
GIUN X3 1SA PIUNX3 1SA €iuN X3 1SA 2HUNX31S8a L Wun X3 Lsd

(unyoejep | (unyoeyep | (unyo eyep (uopped (uonped
snonBijuod) | snonbBiuod) | snonBipuod) | ol g elep O3J) | 4ol | eep 93)
€¢e Al I € G¢ b e
dnoub 2018 dnoub 2915 dnoub 2918 dnoub 8915 dnoub 8018
GIUN X3 1SA PIUNX3 1SA €WUN X3 L1SA 2HUN X3 1Sa 1 Wun X3 Lsd
(uonpsed (unyoeyep | (unyoelep | (unyo eyep (uonped
o} L eyep n3) [snonbipuos) | snenbpued) | snonbjues) | ol g eiep 93)
124 £¢ Z¢ 4 G¢
dnoub 818 dnoub 8918 dnoub 8918 dnoub 891is dnoub 818
GIUN X3 1SA PIUNX3 1SA €iun X3 1SA Z2iunX31Sa 1 Wun X3 Lsd
(uored (uoed (unyoelep | (unuo ejep | (unyd ejep
Jojzeepn3d) | oL eep 03| snonbpuos) | snonBpuos) | snonBijuos)
Gl vl €1l A L)
dnouf 8018 dnoub 80118 dnoub s01js dnoub 89118 dnoub 80118
GIUN X3 1SA PIUNX3 1SA €WUN X3 L1SA ZHUNX31SAa 1 Wun X3 Lsd

&0 Oo-0

Q|
O
~—

uonouny Buidnouf

pue Buipoous

86 syse1 [eled

X
uojyed ejep

et
uopped ejep

e
uopjped ejep

(18s junyo)

Vit
uopped ejep

76 yse)

0T 'OId

6 Ejep

US 9,456,035 B2

Sheet 11 of 54

Sep. 27, 2016

U.S. Patent

1T 'S5

L# Jun uopnoaxe 1sq

36 (s)isey
lenJed
93 J9||0J1U0D fe
8/l ST
o100 |0u0d ¥Z7] |04u00
15d ysE) Alowsw
‘ ¥ A 36 $901IS
€ a|npow ; 06 a|npow 5 Alowsw ~
U3l 1Sa uoIINIaXa | e
1 2 A lo/g
00} sa01/s
=0 snsel ened >

221 $4se) [ented-gns pueZT sbuidno.b sons-gns

891 %oeqpas} 18d

interface 169

L#un 414 Jo}
(s)ysej |enJed

Z X
ejep snonfiuos

| €epep o3

A4 E

L1 (funyo)
ejep snonfijuod

L#3un X3
1SQ Jo} sdnoub aoy|s

X4 uoniJed

£4 uoiped

Z# uoniued

|4 uoijped

US 9,456,035 B2

Sheet 12 of 54

Sep. 27, 2016

U.S. Patent

T 'O

411U UognoaXe 1S

9/ |0U02 yse)

| uoned
10} ysej |eljed

9g J9||0JIu0d

GIP | ¥IP | €WP [CIP | LIP
6P 8p LP 9p
ap 144 ep cP \P v

0P

| uoniJed jo sxy00|q ejep

vZ] [04uod
Aowsaw

snonbijuod pajquasse-al
06 9|npow

uonnlaxa | g
S$Y00|q elep pojquuesse

-8J Uo (s)ucnouny
yse) [enJed wiopad

| uonied o | dnoub
Jo} (shnsai |enJed

g8 Alowaw

GLp 8Sd

yL8ELP €SA

¢LBLIP €S0

01786P €SA

g8./p €S0

99Sp €80

¥8¢EP ¢SA

Z81P 150

| Buidnoub 918 Ul
| uoniped Jo sool|s
EJep papoous

US 9,456,035 B2

Sheet 13 of 54

Sep. 27, 2016

U.S. Patent

Ug Jun
uocindeXxe

1sd

€1 'Ol

78 8uissasoud 15g punoqul

U# (Shnsal |eiued

U# S90I|S poAsLIa)

L#un
uonnoaxe

1sd

L4 (s)ynsa! eiued

L# S90I|S POASLIal

v0b

r
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
I
|
|
|
|
|
|
I
|
|
|
|
|

$90I|S poASLB)

ejep Jad

S90I|S PapooUD

881 9|npow
— »| |01U0D YSE)
201 Synsal |eJed paNgUISIp
A
y
93] 9|npow
061 [04u00 [043U03 061 |0ju00
061 |0du09
y
T — ¥81
087 - ,| 81 Buipodsp o Buuogped
Buidnoib-sp Jose g
9P EjJEp
o 72T uoned 0zt

suoned eyep

e e T

> (shnsau

— 1> 26 Bep

US 9,456,035 B2

Sheet 14 of 54

Sep. 27, 2016

U.S. Patent

v1 Sl

(shinsal
ay} sonpoud 03 Buissaoo.d
S}|NSaJ 8Y) YIIM 85UBpIOdI. Ul
synsal |ented ayy Buissaooud

A

(e
N

0

¥S€) 8U) UO paseq
Buissaooid ynsal Bujuiwsep

O—\ A

QO

synsal |enJed ayj 0
Buipuodsa.i09 yse) BuirsLyel

— A

6l

synsal |enJed aAigdal

US 9,456,035 B2

Sheet 15 of 54

Sep. 27, 2016

U.S. Patent

| 2es3 | 19s3 | swesa | oepesa | cipesa |
. ST 'Ol
[
| zes3a | 1es3 [o9evsepesa | Lzsozp esa | osepesa | vad)
$971|$ 4O $}9S Oul ol Led
| zzsa | 1zsa | wescep7zsa [e1msipzsa | wsepzsa | B 10} SE0IIS pansLa)
| 2is3 | 1is3 [zemerTisa | zimsowpisa | zeipTisa |
08] Jojses —
Buidnolb-ap 06h oA
001
$901|S pansila.
| 2es3 | | 1es3 | | swesa | | ocpesa | | sipgsa |
® [] [] []
[] [J [] [J
® [] [J [J
| zesa | | 1ves3 | [oewsepesa| | ievozpesa| | ovspesa |
| uoiped Joj
| 2zsa | | 1zsa | |weseerzsa| [evsepzsa| | veepzsa |
| 2usa | | vis3 | [zemerisal| | zseptisal| | zmietisa |
G#NILSAWOS VNI LSAWOY €4NI ISAWOS Z#NI LSAWOL N3 1SQ Woy

US 9,456,035 B2

Sheet 16 of 54

Sep. 27, 2016

U.S. Patent

91 'Ol
8GT ejep 9G[elep ¥GT Sjuswbos
popooud pPaol|s papooUd painoas

e i
! 281 buipodsp Joua pasiadsip |
H 1
i — 50z m
m 5 c0¢] Buissaoo.d 0z !
| UISSB0 V] oo | 90z Bupooep | | | Ayunoes _

Ayunoas 8018 ”| Buioys-ep > 018 " Juowbos » DBuisseooid |m|v
Jod asionu| OSIOAUI juswbes-ep | |
A A i A _
061 [04uoo !
II |

243 7T 43
uoniped e Jo} 061 104u0d | g7 einpow | 06L 104U0d syuawBoas ejep uonn.ed ejep
S82|S pansliel |0Ju0d
061 |onuod 061 |oauod

US 9,456,035 B2

Sheet 17 of 54

Sep. 27, 2016

U.S. Patent

LT 'Ol
9 Juswbas ejep g Juswbas ejep ¥ JuswBas ejep Z uswbes ejep
&P o | EVP P | LYP ovP | 6EP 8EP | Z€P 9ep | <ep yeEP | €EP ceEp | LEP
0Ep 6¢P | 8¢P P | 9eP GZP | P gcP | <P lcP | 0cp 6LP | 8Ip LZLp | 9Ip
GlLp vip | ELP P | LIP oLp eP 8p yAY 9p gp PP £p [y P
/ Wawbas elep G 1uawbas eep ¢ Juawbas elep | Juswbas ejep
¥G} siuawbhas /
painoas
—_ 90¢ Buipoosp ¥0C —
081 [ojuoo —» 10U5 < Buios-op <+— DB} |0Au0D
9c] ejep
papoaus \ \/

= GEleep
fed POPOOUB PROIIS

| zes3

| oepesa | cipssa |

| Zes3

| 17es3

| 9ewseresa |

| vewecozsa | 61esipzsa | weepzsa |

| zewiepmisa | zivopTisa | zeipTisa |

g# JueWBas 1o} $801|S JO SJeS

o# JUSWIB3S 10) S80S JO SJRS

Z# uewbas 1o} s80I|S Jo Sjes

L# JusWBas 10} SB0IIS JO S10S

US 9,456,035 B2

Sheet 18 of 54

Sep. 27, 2016

U.S. Patent

8T 'Old

Luoljped ejep

SyP | vvP | €¥P | PP | PP
OvP | 6EP | 8EP | ZeP | 9EP
GEP | ¥EP [€EP | c¢Ep | LEP
0EP | 6¢P | 8ep | L¢P | 9¢P
Gep | vep | €ep | ¢cp | Lep
OcP | 6LP [8IP | ZIP | 9IP
GIp | vIP | EIP | ZIP | LIP
Olp | 6P 8P Jay 9p
Sp 14 ep Zp Lp

(4}
uopped ejep

0rc __
Buissaooid le—— 06}

Juswbas-ap 100u00

26
sjusLbas ejep

| svo | vvp [evp | o | 1op [ovp | 6cp | sep | sep [9ep | cep | wep | eep | zep | 1ep |
| ocp | 62p [szp | zzp | 9ep [sep | vzp | czp [zep [vzp | oze | e [sp | 2o | alp |
Lsip [wp[ep|ap | up{ow |60 [oo | 2o [o | P | w|[eo || 1p]

9 luswbes ejep 9 Juswbas ejep ¥ JuswBas e1ep Z Wuslbes eep
b | | wwp [evp | | zop [1op || ovp [eep || sep [sep || 9ep | aep || wep | eep | | zep | 1ep
oep | | 62p | 8zp | | zep [9zp || szp | wep || €op [zep || 1ap [ozp || 6p [mip || zip | P
sip [wp e |lap [up|]op]| ep gp | sp o | op pp | gp I

J WsWwbas ejep

G JusWwbas ejep

¢ JuswbBas ejep

| Juswbas ejep

US 9,456,035 B2

Sheet 19 of 54

Sep. 27, 2016

U.S. Patent

(unyo ejep (uoniped (uoniped (Ounyo ejep [(qunyo eyep
snonBijuca) | ol | exep n3) | Jofzelep H3) | shonbhuoca) | snonbijuod)
| X ¥ X g X X X
dnoib ao1ls dnoiB aoy|s dnoJb ao1is dnouB 8o1js dnoub 890118
GIUN X3 1Sad ¥IunX31Sa €N x31sa cWn X3 1sa 1 iunx3 1sda
Ounyo ejep [(qunyo elep | (unyo exep (uoed (uoniped
snonfijuco) | snonbBiuod) | snonbBiuod) | Joiz ejep H3) | Lol L elep D3I)
€¢ c¢ I € G¢ v e
dnoub a0ljs dnoub a21Is dnoub a2i|s dnoib a2y|s dnosb 9215
GIUN X3 L1SA ¥IUNX31SA €N X3 1SA cWun X3 1Sa 1 iun X3 1sd
(uonped Ounyo elep [(unyo ezep | (unyo ejep (uopiped
Joy | ejepn3) | snonbiuos) | snonbBpuod) | snonBiuoca) | o)z elep 93)
vz €¢ Z¢ 4 §¢
dnoub a2y|s dnoub a21Is dnoub 22i|s dnoub a01is dnosb 9215
GIUN X3 LSA ¥IUNX31SA €N X3 1SA cWn X3 1Sa 1 3un X3 1sd
(uonped (uoniped Ounyo eep | (yunyo ejep [(qunyd eyep
Jojzeepn3) | lol L eepn3) | snonbipuod) | snonbuoca) | snonbBiyuod)
Gl vl €l A bl
dnoub a21|s dnoub a2Is dnoub s2i|s dnoub ao1is dnoub a21|s
GIUN X3 LSA ¥IUNX31SA €N X3 L1SA cWN X3 L1Sa 1L iun X3 Lsd

AR VA VY

[44
Buipoaap
pue
Puidno.B-ap

X
uopiped ejep

C#
uopiped ejep

é:
uopiped ejep

(}os yunya)
Vi
uopiped ejep

6T 'O
[2%4
Buiuoned
-op
6 Bjep

US 9,456,035 B2

Sheet 20 of 54

Sep. 27, 2016

U.S. Patent

U# Jiun uolnoexe 1SJ

]
w
06 a|npow ¥€ 8|npow m 0Z 914

uopnaaxe 1 IR 1sd !

i

:

3§ Aowaw 09 19(|0JJu0o m
1

U SIS panaLijel

— >

!
}
|
)
° TT S90S panolia) i
s ! | 78 Puisseooid |
' 7| L1sapunogu
U S99I|S \ | m
“ _
| |
| |
E ¥2 omeu m m
$0I|S PaABLIS
Jun uonNdsXe 18Q Hi# SSOLS panaLie! “ m
}
” “ 08 buisseooid “
L# S90I|S 91¢ S92IIS “ 1Sd punogino !
“
}
}
}
}
}

6 B1ep

US 9,456,035 B2

08 8uissaooud 15 punogino

81} enpow
|OJJUOD YSB)
peinguisip

A

Sheet 21 of 54

Z¢ SsedAg

[

9L] e|npow

0T [onuoo |0JJU0D

Ug J1un
X3 1sa S00[S

Sep. 27, 2016

10 Uz Jey)id

091 |0Jucd
A 4 y Y

0lb
Buiuoniued
Ejep

<

[AVEREER 717 Buipoous
fuidnosb | Jols gq

L#uUn ’
X3 1Sd S90S

— 8lc
9l¢ $9I|S POpOooUd

6 Bep

U.S. Patent

10 |# Jeyd $90]s Jo siej|d

US 9,456,035 B2

Sheet 22 of 54

Sep. 27, 2016

U.S. Patent

ZZ¢ 'O
G X y X £ X 7 X L X X# Juswbas eyep
°
.
.
| sz | ve | e2 | 72 | ve | | z#wawbos epep |
[s | v | e | v | v | 1#)uawbos epep |
(444
Buiois 9
Buipoous
I T |
' 717 Buipoous Joud pasiedsip |
1 [}
[} [}
] — [[}
— ! 0sl brl - !
5 8l¢] m Buisssooud T ol Buissaooid crl |
Juawbas ejep Jo Alml funoes [* Bujoys - Buipoous e funoss [¢ Buissasoud
$90I|S papooUd “ 201fs Jod Jows JUoWBoS juswpBas
[}
! A 1 091 |osuoo I 1
| J I [P [P EYNIPRP PSSP IDIIIPIIPIN EPUI PPN EONIPUIPP I [——
4] 6 elep
097 [04ju0d 917 onpow | 79T |04U00 sjuswibes ejep
— [0JU09
097 |oJju09 097 |04u02

US 9,456,035 B2

Sheet 23 of 54

Sep. 27, 2016

U.S. Patent

x Bas Jo x Bas Jo x Bos jo x Bas Jo x Bas Jo
9olIs G leid | sospued | eds¢ed | soysgaed | 8oy | Jejid
®
[J
®
¢ bas jo ¢ bas Jo ¢ bas Jo ¢ bas jo ¢ bas jo
9oIs GJeid | eoysped | eoys¢Jed [soyszaed | eols | Jejid
Z Bas jo Z Bas jo z Bas jo Z Bos jo Z Bos jo
dosGue|id | oyspJed | eoysgued | soysgaepd | ools | Jejid
| Bas jo | Bas jo | Bas jo | Bas jo | Bas jo
9oIsGJeid | eoyspejd | eoys¢ed [soyszaed | eols | Jejid

GIUNX31Sd yiunX3.1SA €3un X3 1sd

¢IUN X3 18ad 1 wun X3 1sd

744

Buidno.b sejjid g
Buiois ‘Buiposus

€¢ 'O

6 ejep

US 9,456,035 B2

Sheet 24 of 54

Sep. 27, 2016

U.S. Patent

v< "Old

L#1lun uojnoaxa | 3

97 2402 3uitndwod

%€ s|npow
1ualo 1sd

d

06 9|npow
uoInNIaXxa 1g

9g 13||0J1u0dD

2] [04u0o
Aowsw

91¢C
$80I[$

» 33 Aowsw

00T
$901|S

interface 169

x Bas jo
20l|s | Jeqd

¢ Bos Jo
8ol|s | Je|id

Z bes jo
90l|s | Jeqd

| Bas jo
20l|s | Jeqd

$001|S |# Jey|id

US 9,456,035 B2

SZ 91

78 8uissaooud J5@ punoqui

Sheet 25 of 54

Sep. 27, 2016

U.S. Patent

[}
1
]
]
“
Q8] 8|npow “
|0J)U0D ¥SE) 1
U# lun 1
uonnooXe cﬂsg,_bw_n m
15d '
y]
__ “
981 Snpouw '
061 [04u0d [CJJUCO gze SsedAq |
[}
[}
U# SB9I|S poAdLIL) T oauoo "
[] Y A 4 Y |
081 | 281 Buipodep i
> Buiuonied "
] Buidnosb-op Jose gQ "
“ -9p Ejep '
1 — 1
Jun “ — 8¢ E——
uoNIBXe ! 001 Juswbas e1ep Jad ' ¢6 ejep
15Q L S301[S POABLISI “ S82I|S pandlyal $99I|S POpOoUL m
]
| :

US 9,456,035 B2

Sheet 26 of 54

Sep. 27, 2016

U.S. Patent

6 Elep

6 ejep

9Z 'Oid
G X ¥ X £X 7 X | X x# Juswbos ejep
°
°
°
| sz | ve | ¢e2 | zz | vz | | z#uewbes ejep |
(1134
| v | v | v |z | v | 1#ewBeseep | juewibes-ep
[T44
Puipoaap
pue 82||s-3p
P T i
H 281 buipooap Jolie pasiadsip !
]
] —_—
m - 80¢
— —_ Buisssooud —
gl¢ m mc_mwmoo.a ﬁ 90¢ b::owh 0l¢
Juswbas ejep jod —+—» Anoss " Buioys-op » Buipoosp > EuEmmw » Buissaooid
$89I|S PApooU m 80I[S 351U _ ;., _e,_m S8I0AL Juswbas-ap
m 06T |04)u0d +
= — est
061 104uU0d | 98T anpoLu 06| 105u03 sjuswbes ejep
— |0Ju0d
61 |04U09 061 [04u00

US 9,456,035 B2

Sheet 27 of 54

Sep. 27, 2016

U.S. Patent

U Jjun
uonnoaxs 18q

$C 9|npow
Jusip 1Sda

03 J9||05u00

06 9|npow
uonnaaxe |

L#Nun
uonnoaxs 18q

$C 9|npow
Jusip 1Sda

03 J9||01u00

06 9|npow
uonnaaxe |

| copooyse)pspoouasg |

U BJEP PEpoouD §(

£ ejep popooud

Sd

£2°0ld 22 SMPOUNIST
| TS T
wgyun | Bpun | oggun
uojnooxe |Sq | 1 uopnoaxe 1Sa i m uonnooxe 1Sq |
m ! i ! i
FEampow || eee 1| FEanpow w eee | | T onpow YY)
wep 180 | i | weplsa | | weo1sa |
1 1 ! 1
95 Joj04u00 | 1 w g 49)|04)u0d m m 98 48)|04u0D m
1 1 ! 1
06 onpow | 1 i [g5 empow] i [55 ainpow m
uonnoexa |q | ! 1 | uopnasxe |q | | i | uopnoaxe 1q | !
— i @ m
) BP9 HSE]} PAPOIUS SQ _ m
i ! i ° ! i
“ “ ! ° i
| i | * . _
i i i i :
!] ! | zepooyxse;papoouasa |
; ! ;

| 1epooyseipepoouaga |

¢ Blep papodus s

| BJEp papodus S

88

Alowsw

US 9,456,035 B2

Sheet 28 of 54

Sep. 27, 2016

U.S. Patent

8¢ 'Old

e -
|

_ U BJEP PApOIUS Joud §J

|
|
|
_ °
I ™
| ®
" _ ¢ BJep papoous Joud §q
" _ Z e1ep papoous Joue S
" _ | EJEp papoous Jous gJ
l
¥¥e —
e i
Jnsau hieaojle 1Sq
2C¢ dnpow
uoinquisIp %sej
h Y
3€¢C (i
F01 synsel aieep | diyse
y pajoses | pejogles
& 9|npow
Jusip 1Sd
D_v_xwﬂ- D_ cm.,:w_u-
dl ¢ sey - al zeep-
dl | ysey - al | eyep-
9E¢ S3p02 YSEFJO] 752 SEP P TI

22 3Inpow (NLSQ) Homjau ysej
w abeJojs paInguIsip “

¥ 90 ¥SE) PEPOIUS JOLD S(_

Z 9p09 Yk} pepooua JoLe Sq _

| SPO9 YSE) PApOoUR JoLR 8Q _

o v
T | S
edoje 1sd JInsay
8¢ 8inpow
uonnqIsIp Xsey
Y A
8¢C iz

aleep [qlse 01 synsel
Pojod|as [pe)osles

T# 8npow
Bl 1SQ
al 6 ejep -
al 9 se -
al pise - qi L Eep-
al | se - dic Biep-
L A e al | epep -
3EZ S9P00 TSEI IO AT _QILEep-
FEC BP0 TS

US 9,456,035 B2

Sheet 29 of 54

0 aIvse) §EZ Al elep .
pajos|es pojoales 6¢ "0l Iy ysel

¢ AsEL
L MoseL | sel

¢ gYsel

-_— pgl _
772 Uoijeuioul 25 9npou ’ | giysel | gisel
uoneoole 18 | S e } LoBNgLISIP YSE) CASEL | giIseL
L 1 Msel

g L yseL
R o LTLyseL | LyseL
ST T w | W

\ \4 2\ «/// Y-S | ¥5E]

Sep. 27, 2016

\ /// e
_ YSEL-QNS <> XYse|
X v ™ N
X Y|V AN
. e >
PO - I [7
X 172 Z uD1S.u 938 .91/01 | ZX uippy | ZX u udis.uos3s.g/s | 09 uJppy | 09 u
X el _) \ . \... _ \ \...
A Al m\o._w .m\om_m -G/ >>\m PRy | AA € € 01S'¢ 93S9L/0L | a9 €Jppy | 49 €
X 17} L N\o._m wN\mum_w Helly >xwm ppy | AX ¢ ¢ 01S'T93S'g/s | av zppy | av 4
Yk [YFA L D18 93s g/ | XX | Jppy & F L OIS 938G/ | VW LIPPY | WY }
8¢ |pow | T ¢ | 8% °x | 0%
SonMqeEden | X3 X3 74 w§|mEEmn_ NR|QC_ % al 99¢ siojelieled 79¢ O] 8715 ar
310 T | =0 Sd Ippy ¥Sel | ¥sel sa IppY EReqJ | Beq
G S8|npol uopnoaxs |1 q 0G¢ uoliewuolul abelio)s yse) B¢ uonewopul abeloss ejep

U.S. Patent

US 9,456,035 B2

Sheet 30 of 54

Sep. 27, 2016

U.S. Patent

0¢ "ol gez spiom | <
anbjun Jo }s|| O1¢ spiom anbiun
96¢ 1€ MO[YSE]
paje|suel)
Aoeuioo ¥1€ suone|suels;
SPJOM JO 18| 1061100
¥6¢ 7% sious | 03 osedwios
paje|suel) A
Apoadiooul
SpIOM 0 18l|
CIE sious 782 2iep [cceer | | o
uolelsues pagisuen-al | s | paesuey | S| COEEP
CB¢ SpJom pJom-Uou 80€ »oeq 90¢ — —
-uou o} anp 88z (seseayd) aje|sues ale|suel;
SI0LID 10 1S]| SpJOM paje[suel) A
alnads 18| ¥0¢ seselyd oy spiom paje|suel; oioads
06¢ spiom A
-uou jo 38y —
Z0C (Aleuonoip e urjou “6a) spJom-uou
98¢ (seseiyd) A
SpJOM 211198ds 18| p—
00¢ saselyd Joyg spiom o1yjoads
(Z”} pue G| Ja)le palaplo) SUCHE|SURI) 109400 SUILLISIBP - /| Yse)
saselyd o/ SpIoM 211198ds pull - 7 € ¥SE] (171 puE G| XSE]} JBJJE PBISPIO) SI0LS UOEISUB. PIOM-LIOU BUIULIBISP - 9 | YSE)
sle|sues) - | 7€ Yse) (-1 SE} J8)ie paisplo) sioiia (| 0} 8iedwod - G|, ¥se)
SOSeIyd J0/Q SPIOM Poje|SUES] J1jI090S pull - § SeL (€71 ¥se) Joye palapio) %oeq Sje|sues) - | Ase}

(paJopio-uou) sje|Suel - € | YSE)
(pasapio-uou) spsom anbiun Aluapl - g | %se)
(paJapio-uou) spJom-Uuou ALuspl - | | YSe)ISISA[EUE UONEISUBT - | JSEeL

SBSEIUT 105 SpIOM D330 PUll - ¢ V5B

US 9,456,035 B2

Sheet 31 of 54

Sep. 27, 2016

U.S. Patent

- - A . R . T
I JIUN UONNOSXS § | JUN LUOINOSXS ; ! JIUN UORNIBXS § ! JIUN UONNOSXS § | JIUN UONISXS ; ! JIUN UOKNOSXS | I JUN UONNIDXS |
i 1sd i1 1sd ji isd ji o isd pi o isd ji o isd ji 1sd i
m 7€ o|npow m m F¢ onpow m m 7€ o|npow m m F¢ onpow m m 7€ o|npow m m F¢ onpow m m 7€ o|npow m
1| WP 1Sa |i }| W 1Sa |i i| WeIP 1Sa |i j| W LSa |i i| WeP 1Sa |i j| weIe Lsa |i j| wep 1Sa |
i| | Jjjosuco m i| | Jojjosuoo m i| g Jojjoquco m i| ¥ Jojjosuoo m i| ¢ Jajjosuco m i| Z Jojj01u0o m i| | Jjjosuco m
" | | | | | | “
1 47 einpow fi ff 7L einpow fi LG anpow |1t LTy einpow i 1| g einpow (it |z enpow |1 17 ainpow |
1| uonnosxs |! i| uopnoexe |i i| uopnosxs ! i| uonnosxs ! 4| uopnoexe |i ;| uonnosxe |! i uopnosxs |t
! 10 | 10 | 10 | 10 | 10 | 10 | 10 m
i by 'y by 'y by 'y !
“ N ! 1| | | | m
m ! m ! m ¢ 909 YSB) PapodUd S(!

| I | - .1 .1 T T)
m ¢ 9P09 Xse) papodus 5 m m m m m
“ ™ ™ [| ' L !
m i m i m | ©P0J %SE)} pOpOdUS S(Q i
! ! ! H H H H “
! . | ¢ BJep Papoous S(m
m N B ! ! ! ! “
1| 3§ Aowaw |; 1| 8§ Mowsw |; 1| 8§ Aowow (} 1f BgAowsw |i i| §gAowsw |; | 8§ Aowew |} 1| §§ Aowew |
]] L] L] L !
b e P e b e P e b e P e b e i

US 9,456,035 B2

Sheet 32 of 54

Sep. 27, 2016

U.S. Patent

O
€-L‘9'gsun1Sa| Swunisa Gunjsa |ced | 7S®TvCeTIT) Z¢lY-1 ¢y ﬁmEﬁ. ¢
1Y g7y esn m;mw@ﬁ Mwo: 17
-l L Shun 18@ Zjun 1sd Zjun 1@ ¢d VA S R AR A Ao z2z-1¢ auou A
ZG1Y-1 &Y Sl

L-gsjun 1 8@ gjun 18d EINLISA |20 | TS®TYTETTTL | 87Tl | ®C Laeye | L)

B o N|m-_.m_- r|m-_\m_ mJ. B
9-¢ shun 1@ ¢iun 1sd cInisa [l | LSRRV YL EL L L | B2 ML L | L Leye | 9}

z22-1¢
G-l spun 18Q L Iun 1S@ bpungsa | SM [LSRUY P e L L | 8Z - L vl v | lene Sl
AVE NN A Z ¢1Y-S ¢y
- spun 18Q gun 1sd gwnisa [y d | VSR EL L) v Eld- 1 ey € | Jeye vl
76RTvTeTCT z27-6¢
9-¢ spun 1s@ ¢iun 1sd cwnisa [eld | VSR P EL T L ve-lL e auou €l
G- shun 1@ Lyun 1S@ LIun1sa [aid | LSRR eE Tl ve-1¢ auou A
G-l spun 1SQ L un 1SQ L un 1Sa < A - I P A A A Z2-1¢ auou Ll
53
OpcobEIOS | gecopeol | DUSSON | TEE 4 (743
JITSaT SEIpaWIaTY | PEC (OJEDS | JISal Wiejul | BWeN | 26 Spow X3 Lq 0155 BUTBPIo Se] | 575e]
¢ OJul Jnsal sjelpswlsiul 28 OlUl UOIINOBXS YSe)
UOIEDIPUI UOISIBAUOD JeULO) ‘uoiied yoea Jo) ojul Jppy ‘suoijiued jo ‘oN ‘(] e1ep :0ZE ol uoiued elep ZWZ Ol Uojesojle [Sq !

US 9,456,035 B2

Sheet 33 of 54

data 92

Sep. 27, 2016

U.S. Patent

| result 1_2 (list of unique words) |

mmmmmmmememoooooooooo _ G¢ 'old oo mmmmemcmmmoooos _
m 07 Au 06 m m 07 /\U 06 m
_ s)inss.]| spowx3q | — s)nsa) | ¢ spow X3 | u
@ lered 1aoes |5 | Auonped va eed 1q1030s || Z uonped
' “ u 1€ Liinsal ' e e ' Elep
]]
- ! ® o H eoo o m " u m o000
1 00 06 | = 07 06 |
o | zuonped | 4= _ g uonied |
= €4 | sunsal 1| spowx3 | < \ ! 2] s)|nsal spow X3 -
2| T | lewed < 1aJo1es /U €) linsel ¢ 8 AM eiyied < 1010108 Au elep
1] 1
m { [1 vonped ! b [} vonned
= 00 06 €7} Jnsal : 07 % V> eep
| fw sjinsal AU spow X3 W_\W — ﬂv sjnsal AL Spow X3 ﬁ_ﬂw
| lened 1010%s | | m elued 1qiodps | !
! Oioeq ojejsuen) ¢ | ysey ! (ejeIsuey) £ | ¥se) m
4 S S g S S S d
Tw o] [% ve Ol TP TR T 6e0i
synses | {1 spowx3 | & — [| smsar || spowxa | L
@ lened 10403es [> Z uojped g @ [enJed 1qJo1es ”%W z uonied
i . ° v ejep sl i . ° ! ejep
1 [] e 1 1 1 [[] 1
! ® o ! (YY) o m !) e ! (Y Y]
] 200 06 i o s 1 201 06 i
L | z uoned AM a S| A, .| z uoned
| sinsa 1| spowx3 i —| & w i | synsel 1| spow x3 >
A“ jeed < 1040198 A“T eep el I e Aw“ﬂ eied = 1040 108 A“r Ejep
1] | 1
i i | | uoned = [} uoned
T, zor 06| e 2l 700 6 / BJep
N | sinses AU spow g | T S = >@ sy AH Spow X3 ﬂww
1] 1 1
L | fened 1440ms | L | eped A
I (spiomenbunql) g | yse} ! ; TSpIOM-UOU (J]) | | YSE) m

data 92

US 9,456,035 B2

result 1_7 (list of correctly translated
words)

Sheet 34 of 54

Sep. 27, 2016

result 1_6 (list of errors due to non-
words)

U.S. Patent

20T 06
sjnsal spow X3
lenJed 13Jojes

[o
[®
[] ®

a0r 06
sjjnsal spow X3
leied 1340188

} e e e e e e e e e e e e e e g
ot “
—]

“ o % |
A_W sjnsal spouw X3 %
i |ered 1djoges |1
! o ° i
1 [J e “

i ° ° i
1]

1]

1]

1]

_ “

“ 700 ® |
AT Synsal spow X3 /\“w

lened L1djojes

Z uopiued
¥ 1)nsal

Z uopiued
ejep

Z uoyied 9¢ '9I4
Z Lnsal
5%
Z uoied 2E
G | nsau ~ 2
=z
. 23S
L e
|} uoned 20F 06
77| Insel B SRS AU SpoW X3
- leed 1QJoles
| uonped &
G | Jnsal M,
ot ° °
= - [®
88 o °
= Qo
Z uolyed 5 =
T)nsal 2 _
G L - — =
z uoed = sjnsa. AJ spou X3
17| Jnsau m lenJed 1qJoes
° _ (esedwoo) G| ysey
e o o
i k)
| uonped)
G | Jnsau < m
- =
| uopyed 3 e
L | }Inseu -

| uoniped
vl_‘ jjnsal

| uolped
ejep

| | result 14 (refranslated data) |

data 92

US 9,456,035 B2

Sheet 35 of 54

Sep. 27, 2016

U.S. Patent

result 3 (specific translated words/phrases)

translated words)

6¢ 'Ol]
g
S
¥0] synsel AU @
~
=
(2]
)
8¢ 'Ol
20t 06
sjnseu AL spow X3
elued lgjojes
(] °
[] []
L L]
201 _ 06
synseu AL spow X3
elped 1djoies
201 _ 06
synseu AJ Spow X3
|eled 1dloles

(seselyd

/SPIOM 211108dS paje|SuB) € 3Se)

result 1_6 (list of errors due to

non-words)

Ty

result 1_2 (list of unique words)

Z uophiped
€ |nsal

Z uopiped
€})nsai

| uoijped
€ |nsal

>
result1_3

Ty

¥i¢ UOIIBULIOUI JNS8.

| result 2 (specific words/phrases) |

) —_
) g 8
2 = ®
2 B g
S =
g = m
= g s 3
- g &
5 ™ N
8 = =
S W W
A E!
20t 0% |
sj|nsal —i| spowyx3 | i
lenued AI 1qJo3es mJM z uoned
4 ° ! Bjep
o [J 1
e L] i (YY)
cot 06]
oniyed
sinser [<3| spowxa | 4 cm hww
efued 1qlojes | 1
m | uoined
20} 08 _ ejep
s)nsai AJ_ Spouw X3 r_qs
lenJed 110188 m
i

(sase.yd/spiom 211108ds) 7 Yse)

data 92

US 9,456,035 B2

Sheet 36 of 54

Sep. 27, 2016

U.S. Patent

VoY "ol

= |
¢ge¥esun gg |
PN-ZN HAAV LN ¥dav H-44ady 3J4aav a-94¥aav v ddav “
¥S¢ ¥5¢ ¥5¢ ¥S¢ $S¢ ¥s€ I
Jun 8@ jlun 8@ oo jlun 8@ Jlun 8@ Jun 8@ wnsg | 1
A Y A A A A |
— — —— — — — e —— — — — — — — — ——— o —————— —— —] |
S O
TART
Hlii:
x 5]
8% | =3
< @ Q9
<C
5 g 5 2
= o) o
i
A RE-3!
2 oo =8 | ®°
m 2 3 %_
x & o B
9 3 r 3
= o
< m @
\ 4 y \ 4) 4 y < \ 4
DGE ainpow Buissasoid §Q 95¢ dew abeios

US 9,456,035 B2

Sheet 37 of 54

Sep. 27, 2016

U.S. Patent

g0v "I

asuodsal Jaumo sbuel
paAigoal e uo paseq dew afeios ayj ajepdn

08 1

Jun g 106.e) ay) yyim pajeidosse abuel

SS8IpPE NS peiliiusp! 8y) sepnjaul jey) jiun
s 196.e) ay) 0] Jsonbal Joumo abues e anss|

81 i

Jolla Buissaippe
asuodsal sse00e ue Buiaisoal usym dew
abeli0)s e Y)im soueploade ul iun g 1abie) ay)
Uim pajedosse abuel ssaippe NSQ e Aluapl

oI T

Jun sa
186.E) 8311 07 188NbBJ 888998 JUN S By} INdINC

23 T

ssaJppe
NSQ 8y uo paseq jun g 1ebe) e Ayjuspl

ﬂ A

i

<

Ssvippe NSA
B U0 paseq Jsanbal ss829e Jun g & djeloush

o f

US 9,456,035 B2

Sheet 38 of 54

Sep. 27, 2016

U.S. Patent

v "Old

J0JJe aeolpul

(=
[ap)

N

Apeayje

asuodsal jaumo sbuel
paAladal e uo paseq dew abelo)s ay) sjepdn

08¢ i

paunuspl usag Apeale
sey Jiun g 1ebue) By Jayiaym sulLIBIBp

abel01s B LM 2ouepIooae Ul jun sq 1eb.e) ayy
yum pajeroosse sbuel ssaippe NSQ e Ayuspl

3 i

yun s@
10018) By} 0) 1s0Nbas 3098 JUN g a2y} Indino

[253 N

Jolle ajeolpul

¥6¢

palluspl uasq Apealje aney
syun gq 1961e) AuBW 00 JBYIBUM BUILIB)OP

%e 1

1un g 1eb.ey sy ym pajeosse abuel 83¢ a
S$S2IpPE NS PaUiuspl 8y} sapnjoul Jeyl jun ssaippe
Sq 1e61e) 8y} 0} 1sonbal Joumo sbuel e anss| NSQ 2u3 Uo paseq jun g 1o6ue; e Agusp
3 0 453 4
Jous Buissaippe ~
ssuodsal sseae ue Buinisaal usym dew Sseippe NSd

€ U0 paseq Jsanbal ss9998 Jun g € ajessush

O
[ap)

0z i

Jlun g swioy e 0} afuel
-Qns $SaIppe NS 8} 0} spJebal yym abesssiu
Jsumo sbuel B ‘Jun §q pAys 8y Ag ‘anssl

9 1

Nun §q piy} e 0) oBueI-gNS Ssalppe
NS aU} ‘Jun Sq pucass sy} Aq ‘aresBiu

v 1

Jun g puoass e o} sbuel
-gns $SaJpPE NSQ B ‘Jun Sq 184l e Ag ‘sie.biw

= f

US 9,456,035 B2

Sheet 39 of 54

Sep. 27, 2016

vy 'Ol

90¢ asuodsal g ¥aay
99¢ 1s9nbal
$$80%8 g yaay

I

I

I

I —

_ ¥6¢ 1sanbay
_ $S9928) ¥AQY 65 1sanba.
[$59998 0 ¥aaQy
|

|

I

I

I

— A 4 A‘ﬁ _ A 4

S
S| junsg
<

3
Jun sa

D <
o0

Se
unsa

¢GE 188 un 5@

9

ADDR C acc
request

3
[on] D WO
o %_R 158
[<b] -
52Y|'o§
a9 x 2
<C Q. I o
g | 2®

<C

\ 4 \ 4 \ 4
0S¢ gnpow Buisseso.d gQ 9G¢ dew abelos

U.S. Patent

US 9,456,035 B2

Sheet 40 of 54

Sep. 27, 2016

U.S. Patent

gy 9Ol

Anus Bunsanbal e 0) asuodsal $$2008
Jun g e un g 1961e) Mau 3y Aq ‘anss|

ar T

llun §(196.81 Mau ay) 0) 1senbal ss308

Jlun S 8y ‘Hun S yobiey auy sapnjoul Jey)
sjiun g Aleipaluisiul 8Jow Jo suo Aqg ‘plemio]

007 T

=4

Jun g 1ab.e) ay) yum pajersosse
Jou sI ssaippe NS oy usym dew sbelo)s
|BDO| B PUE SSIPPE NS(8Y} U0 paseq Jun
g 1964e) mau e ‘un g 1abie) ayy Aq ‘Aujuapl

86 T

Jun sq
1964e) 841 07)$8Nnbal ss8208 JIUN S BY) IndINo

23 T

ssauppe
NS 34} uo paseq jiun sq 1961} & Ajuap!

e i

ssalppe NSa
B Uo paseq 1sanbal ssad0e jiun g(] & ajeiouab

o f

US 9,456,035 B2

Sheet 41 of 54

Sep. 27, 2016

U.S. Patent

ver Old
7y 2ameubis
02 dweysawin
3T uonezinn abelo)s
91% Aloedes abelojs
717 Aoy xopul
1% Aue xspul
o 807
X 7| Aowsw
$89I|S XopU| 7
907 v
onpow | 707
4 v v SA | o1F Anue xapur | Jal04u09
vge ¥Ge =3
wnsq | *°® | wnsa Jun s 758 1un S0

¢se1es jun @

US 9,456,035 B2

Sheet 42 of 54

Sep. 27, 2016

U.S. Patent

g¢v Ol

Aijua xapul pajepdn ayj y)im xapul [esiydlelaiy
pasiadsip 8y} Jo Aljus Xapul 8y} S}LIMIBAO

0% 1

uonewJoyur abelols
8y} apnjoul 0} Aujua xapul pajepdn ue ajelsusb

(247 1

nun
SQ 2y} Jo uonew.ojul abe.ols ay) suILLIBIEp

5 1

Jlun g € 40 uolewJojul abelo)s
0] SpJebal yjm xapul [ealydJessly pasiadsip
e Jo Aua xapul ue ajepdn 0} sujwIB)ep

7 f

US 9,456,035 B2

Sheet 43 of 54

Sep. 27, 2016

U.S. Patent

vy "9Id
eV ojuiuonedoj 23S | ZEFempow |
7S ojul uojjeooj soj)s | UoHEO0| 0lis [T FEF ol uoeao) a91s
wrom
e U01jE90| SW
Jun 8q geF esuodsal $S8998 891 m
. “— 977 190nbal $58098 80|18
°
°
| .
Jun sq T osu0dsal SS399E 90I[S
“— 9¢7 1senbal ss809€ 80IS
807 |
Kiowsw ”
4 -
3
- —
— 14014
B0V e so0nu00
Aowaw
2 PN By esuodsal ssa00B IS
Aiowsw d € >
— “—— o9¢ysenbal sse00e 20IS
yeeiun sg

0GE Jun
Buissesoud g

US 9,456,035 B2

Sheet 44 of 54

Sep. 27, 2016

U.S. Patent

gavy "Old

asuodsa) LojeLuIojul Uoneso)
80I|S B '8{NPOW UCEd0| 891s 8Y) Aq ‘onss|

%r il

}senbal UoRBWIOUI LOEIO|
20I[S & ‘SNPOW LOIED0| 831S 2y} AQ ‘@A1808)

05 i

uoljeLuojul Uoleao| 8o1Is
pajepdn 8y} ‘s|npow uoneso| 8911s sy} Ag ‘8i0)s

i T

UOIBWIOJU| UOREDO|

901|s pajepdn sonpoud 0) LOJEeLLIOU] UO[Jeso)
801|S pPaAIadal BuIsn UOIJBWIOLUI UOHEDO| 8D1|S
PaIO)S '9|NpoLU UOEIO| 891IS BU) Ag ‘Bjepdn

57 il

djnpolw
uoljeo0| 99)|s Buipucdsaliod e 0} uoijewIo]
uoljeoo| 891|s 8y} ‘Ajjus Buipuss sy) Ag Indjno

i i

UONBWIOJU| UOHESD|
891s sy} ‘Aypus Buipuss sy Aq ‘eie1sush

4] T

UOIEW.OJUI UONeso|
891 anss| o} ‘Ajjua Buipuss e Ag ‘suiusjep

a f

US 9,456,035 B2

Sheet 45 of 54

Sep. 27, 2016

U.S. Patent

Vay 'old
- - T T T T T T
[06% enpow | Z uoiued ejep pajdAious| ggg sinpow | _
_ Z uoppued | uondAiop v uondioap [z opped epep | |
| ejep 71F e|npow pajdAious-al I
_ 67 ‘o uoluny [
" F6% ainpow snpouw LA s ULLRIOp chot [ppompow | |
UONOBIIXS BlEP ~—— | uonnied uonebaibbe-o |
| L 0I5 aipou ¢ fo ST anpow | L— .
I @ T Ejep uonoun; \ uonaun; _ =
_ Towbes PO SySiuILIB}ep AI_ 85% anpowr | | dsuiuwsiep AI_ | 2
_ ele < uondhioep e S
| ser 1ep | uoniued eyep | uoied eyep peidAious _ g8
_.%S%S% LNOV . (-
II - w
[0}
% 9% s|npow @
aﬁ 305 1es eays | Buipooap Jous pue Buioys-op
olwsw
[mm e —— —— —
NSd Z uonued ejep Z uoniued — I
I — o — ¥9F 8inpow
= pejdhious-e) [ga sinpow AE% paydhious [=7 sinpow PR uonped ejep uonessusb _
705 _ uopdAious uopdAioue ejep _
JELEN [A __V 7y —
| Y1} eInpow 867 eep |
— uopouny | 2 Ao) Poeiauab|
95y _ == u;m_c__ctﬁmc 8oy o _
g|npow P _ ¢8¥ enpow —_— a|npow 99¢ anpow _
bupys [€T 55| uonebeubbe 375 onpoul =5 opoll voned [€=1 uomelur ||
pue I aBeyoed | | uopouny uoRouny Mww eep I
Bulpooud “ 2Inoss A ¢ Aoy SIUILLIBIOP | Aoy | onsiuius)ep bW 5% I
lolje _ 77 ainpowr | Juswbas “
uondioue [ElR
“. TTF J6pOOUD [NOY | uonnued ejep pajdAious NaAIdu | uoniJed ejep 1ep |

US 9,456,035 B2

Sheet 46 of 54

Sep. 27, 2016

U.S. Patent

Alowsw yiomiau abeI0IS pasIads|p e Ul
S8II|S BIEP POPOSUS JO J8S 2y BuLo)s a)ey|ioe;

05 i

$80I|S EJEp PapooUR JO 19S B aonpoud
0} uopouny Buiped Jows abelois pasiadsip
e Buisn abexoed ainsas ayy Buiposus sjey||10e)

5% i

abexyoed a1noas e aonpoud
0] uonied ejep pucdas pajdAious-al sy)
pue uoned ejep 1sii peydAious sy ajebaibbe

5% 1

a5y "ol

uoniued ejlep puosss
paidAious-a1 e sonpo.d o) Asy paiyy 8y} Buisn

uonied eyep puoaas pajdiious sy ydhous

243 1

foy
piiy e sanpodd o) uoyiued eyep Jsii pajdAisus
U} Uo uoijouN o)siUIWISIep 8y wioued

s 1

uoniLed eyep 181 peydAioua ue sonposd o) Aoy
puosas ay) Buisn uoniued elep 1841 ayy JdAious

4 1

Koy puoaas
e aonpo.d 0} uoniled ejep puodas pajdAious
8y} Uo uoijauny ansiuiwIsIep sy wuoued

815 1

uoljued
elep puodss peidiious ue sonpoud o) Ay
1811 8y Buisn uonned ejep pucaas ay) 1dAous

o1 1

Aay 1841 B 89npoud o) uoinied
B1ep 15111 8Y) UO UOIDUN] dNISIUILLS)ep B wiopsd

2] i

suoned ejep puodses
pue 184 8onpoeud o] ejep paxiw sy} uojiued

s 1

EJep pexiw aonpoud
0} Juewbas ejep e ojul elep poresoush joslul

™ f

US 9,456,035 B2

Sheet 47 of 54

Sep. 27, 2016

U.S. Patent

E]ep paxiW sy) wouljuswbes ejep e 108X

i

(9
LO)|
LO)|

BJep paxiw sonpoids. 0
suoln/ed ejep puodss pue jsiij sl uoniyed-ep

5 1

[
LO|

uoned
Ejep puodas e aanpo.dal 0) Aay 18414 8y} Buisn
uonyiued eyep puodas pajdiious ay jdhiosp

87 1

[en]

A9y 18411 B 82npo.dal 0) uoyied ejep
18114 BU} UO UOIIUN} INSIUILLISIEP B} Wiouad

9% 1

5% 'Ol

uolped
EJep 1811} e 8anpoudal o) Asy puoaas au)

Buisn uonied ejep jsii) paydAisua ayy ydliosp

22 T

Aoy puodss
e 9anpoidas o) uonied ejep puoses pejdiisus
U} U uonouny SRSILILLISYSP 8U) Wiopad

1

N
<F
LO|

uoyed ejep puodes
paydAous ue sonpoadal 0y A8y paiyy oy Buisn
uoniled ejep puodss pajdiious-al sy JdAKep

07 T

Ao pai
e aonpo.das 0} uoniied eyep jsul pajdAious
U} UO UCHIUN JNSIUILISISP B Wioad

G5 i

uoniled ejep puooss pajdAious
-3J & pue uoliued eyep isJi pejdAlious ue
aonpoJdau o) abeyoed aindss ay) sjebaibbe-ap

9% T

abeyoed aindes e aonpoldal 0] uonouny
Buipoa Jowie abelos pasiedsip e Buisn 9IS
EJEp papoous Jo jas ay) Buipcosp aje)l|ioe}

2 i

Alowaw yiomeu abelc)s pasiadsip e oIy
$801|S EJEP POpOSUS J0 39S & Bulasial S)e}|IoE]

= f

US 9,456,035 B2

Sheet 48 of 54

Sep. 27, 2016

U.S. Patent

W 8npow jualP 18Q

¢ dinpow jusip 15d

Yoy "OId
295 einpow Buipuiq
A
................. i g ojur Buipuiq
“ | o Buipuiq
UIUIN X 1SQ [
g U-Z 188nbal 891jS 8jum
0 ' U-] 158nbaJ 821|S B)IM
P
}
«l —
gwnx3gisa [! £-7 159Nbal 92I[S ALIM ¥ ompou
! £-] 1sonbal 20l|s LM
m Z oju Bupulg
zuuny3g1sa [_ Z s1sonbaJ 821|s 8)lM
.) Z-z 1sonbal 99|Is)M
' Z-| 1senhal 80l|s B)LIMm
}
m
Lunx3sa (€7 | ojul Buipuig
“ |-Z 150nba1 82)|s djum
—) -}, 1s3nba1 92I[S LM | S)senbai 891|S B)LM
9Gjes N X3 180 |

| S|npowjusld 1Sa

US 9,456,035 B2

Sheet 49 of 54

Sep. 27, 2016

U.S. Patent

g9y Ol

< Z 8inpow jusid 1S < g 108lq0 BIEp
Z s1sonbal g 100lqo exep
80I1|S BJLIM
¥l 41 ol 2]
< Jojosjes |« Buipoous |« Buiuonied |e— Buiuoiuod | G 109lqo eyep
| sjsanbal Buidnosb | ¥ZG318S | Jowe 3Q TS ejep OBQ Blep G J08(qo ejep
301|S SjuMm 97lI|s ElEp Juswbas uoijo .
papoous ejep ejep @@m EJEp paje|al
08 anpow Buissasoid gq punocino ¢ 198100 E3ep
Z 1o9[qo ejep
| |inpow jusip 154 . 1001q0 Ejep
30G ejep pajejaiun

US 9,456,035 B2

Sheet 50 of 54

Sep. 27, 2016

U.S. Patent

9% "9l

295 anpow Buipulq

Y
TmmmTmmmmmees ¥ §7G sasuodsal 92]|s ajlm
! |
']
b umnx3lsa [
“ | Uu-z asuodsal 991S)M SIDOL 1UB1lo
! e | U-| asuodsal 8oI|s B)LM W SInpou sl 1Sa
N
| m :
“ £aunX31sa I ¢~z esuodsel 801s M ¥¢ Yompeu .
m ' ¢-) asuodsal 90s oM
_ |
m | Z einpow el 1S
' gWunx318d I
'] Z-7 9suodsal a21|s ajm
“ | Z- esuodsal 901s alLM
L}
“ "
']
! L unX3 18d H
“ I |-z esuodsal 80l ejm | 8|npoww Juaijd 18a
L] |- @sucdsal 8IS a)lIM
I 09GIeSUNXILSA |

US 9,456,035 B2

Sheet 51 of 54

Sep. 27, 2016

U.S. Patent

Z bue | sasuodsal

asy oid

296 8|npow Buipuig

mommTTTTTTTTTTTT uoljoesuEel)
1

| | Zpue | asuodsal uojoesUes

!] I

" UNUN X3 180 |

I | «—

! . 1 ¢ pue | 1sanbai uonoesuel)

! o m

| | zpue | esuodsal uojoesUR]

" - —

“ ganx3Lsa |- «—

! Ay Jsenba. UoljoBsSUEl)

! '

“ | ¢ Ppue | asuodsal uojoesuel)

| P —

' cunx3a1sa | . «—

! | Zpue | 1s8nbai uonoesue.;

| [}

' “ Z PUB |, 9suodsa) UOJOBSUE)

" ! ——

“ Lwunx3isa |- «—

“ | Zpue | jsanbai uopnoesuey)

| _]

| DGIesunx3isa

Z bue | sjsanbal
uoljoesuel)

¢ uofealou
| UonEdlHou

¥ YJomjau

I 8inpow! Jusid 1SA

¢ uoljeaynou

¢ 8inpouljusip 184

| LOKEOjOU

| 8inpowju=ld 18a

US 9,456,035 B2

Sheet 52 of 54

Sep. 27, 2016

U.S. Patent

ujun’x318d

39¢ 'Ol

296G ajnpow Bulpuq

Z SNjE)s uoljoesue)
| Snje)s uonoesues)

giun X9 18d

¢iunX3 18d

V¢ Homau

I 8inpow jusiid 1Sd

Z SNIB)S uonoesuel)

L Jun X3 1Sd

A

¢ ®npow jusid 18Q

| SNJe)S uoljoesues)

A

| 8Inpow jusip 18a

US 9,456,035 B2

Sheet 53 of 54

Sep. 27, 2016

U.S. Patent

soseyd
Buiuiews. ayy Jo Buissasoud ay) jo ucna|dwod
16 Alowaw NS 8y) clul elep pajejal
aL Bunlm ay) Jo sniess Jo ssinpow Bunssnba.
ajlm 8y} ‘sinpouw Buipuig sy Aq ‘Apou

76 T

soseyd
Buiurewal sy} ‘gnpow Buipuig ayy Aq ‘ssa90.d

o5 T

sjsanbal a)lim
10 $)9s aJoW Jo sue 8y] Jo dnob sy Jo seseyd
Buiurewsy Buisssooid Buipsebos snpow Buipuig
ay) yum ‘sjiun abeio1s ayy Ag ‘ejediunwwod

065 1

497 "OId

EIEp palejal 8yl Jo suoiuod
10 dnoub ay; Jo uoiod e 0} spucdsallod
1senbay s)lIm sy} Jey) Bunesipul uoljewlojul
‘fowsw NSQ @) Jo siun abela)s Ag ‘Jaidiajul

985 1

ainpow Buipuiq e 0y uoiewJoul Buipuiq
‘sa|npow Buisanbal ajum jo dnoub ay Aq ‘puss

95 1

Aowsw NS(Q 01 sisenbai
]1M JO $)8S 840w Jo BUO By} Jo dnoib e
‘so|npow Buiisanbal ayum jo dnoub sy AQ ‘puss

785 i

Blep paje|a.
Jo suoijod Jo dnoub e Jo auo Buipiebes sjsenbal
BLIM JO $]8S 2J0W 40 duo ‘sejnpow Bunssnbal
aJLIm Jo dnoJb sy Jo yoea Aq ‘sielsuab

%5 1

pajejas ale s}98(qo ejep ay) ‘senpow
Bunsanbal aym Jo dnoib e Aq ‘suiulalep

w f

US 9,456,035 B2

Sheet 54 of 54

Sep. 27, 2016

U.S. Patent

SUOIJDESUE) BYUIM PUOIBS
puE 5.1} 8U) 0} splebal ypm s19s sHun s
aiow 10 8UO 8Y) Jo yoes 0} sisenbal uooesues
azl|eul} ‘a|npow Buipuig ayy Aq ‘enss|

oo
—
(L=

*

uonoesuel)
B)lIM PUODBS 8U} JO PBAIBOS) USa] 8ABY
SJUSWBPSMOUNIE JILILUOD JO JaGUINU 3|qeloA.)
e Jey) ‘sinpow Buipuiq 8y} Aq ‘suiwalep

<O
—
[{=

1

UOIJOESUBI) SJUM PUOISS L) JLWLWOD

0} 8}9S S}JIUN (] 2J0W JO BUO BY} JO 135 Jun S

Buipuodsea.ios Jsyioue 0} 188nbal uonoesUel)
Jwwod e ‘einpow Buipuig sy g ‘enss

<r
-—
(L=

1

SUOIOBSUES
B]LM BI0W IO OM] BU] JO UOIIBSUE)
B1lIM PUCISS B IO} PBAIDOBI USBQ aABY
SJUBLLIBPBIMOUNIR BJlIM JO JAGLUNU B|(BIOAB)
e Jey) ‘sinpow Buipuig 8y} Aq ‘suiuLBlep

[
—
(L=

1

uonoesuel)
SJ1IM JSU1} BU) IO} paAIDODI USD(Q BARY
SJUBLIBPSMOUNI. JILOD 1O JBQUINU B|GRICAE]
e Jey) ‘sinpow Buipuig a8y} Aq ‘suiwBlep

(=)
—
(L=

*

Ly Ol

LONOBSURL B1LM }SJ1) BU)

JILILUOD 0] S}8S SUN §(Q 2I0W IO BUO BU) J0 188

Jun g Buipuodsa.iod e 0] }sanbal uoioesUEs]
Jwwod e ‘einpow Buipuig sy Aq ‘enss

*

Q)|
[
[{=/

SUOIJDESUBI) 8]LIM IO IC OM} B JO
LOIjoBSURl) 8)UM JS1I] B 10} POAIBOSI LUBa(dARY
SJusWBPaIMOUYO. S)LM 1O JaqLUNU S|geIoAE]
e Jey) ‘einpow Buipuig sy} Aq ‘suiwlep

©

%09 i

SUOITOBSUEL] 81LIM 2I0W IO 0Mm] 8Y) 0} spiebal
UM SJ8S SHUN S SJ0W JO O WoJ) sasuodsal
uonoesuel} ‘anpow Buipuig ay) Ag ‘OAIgda)

709 i

suoljoesUel} 8)lIM 2J0W
Jo oM BU y)Im pajeidosse sanpouw Buissaooid
G(] 2J0W 1O BUO LIOJL SUOIDESUERL) S)UM
aiow Jo om 8y} 0} spJebas yum uoneulojul
Buipuig ‘ejnpow Buipuig e Aq ‘uielqo

U i

UOIIDESURI] 8]LIM UOWLLOD
E U}IM PBJBIDOSSE 9Q 0} SUOIIDESUE.] S)liM J0LW
Jo om ‘gnpow Buissasold g e Aq '108(es

™ f

US 9,456,035 B2

1
STORING RELATED DATA IN A DISPERSED
STORAGE NETWORK

CROSS REFERENCE TO RELATED PATENTS

The present U.S. Utility patent application claims priority
pursuant to 35 U.S.C. §119(e) to U.S. Provisional Applica-
tion No. 61/819,039, entitled “SLICE MIGRATION
TRACKING IN A DISPERSED STORAGE NETWORK?”,
filed May 3, 2013, which is hereby incorporated herein by
reference in its entirety and made part of the present U.S.
Utility patent application for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT
DISC

Not Applicable
BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to computer networks and
more particularly to dispersed storage of data and distributed
task processing of data.

2. Description of Related Art

Computing devices are known to communicate data,
process data, and/or store data. Such computing devices
range from wireless smart phones, laptops, tablets, personal
computers (PC), work stations, and video game devices, to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a com-
puting device includes a central processing unit (CPU), a
memory system, user input/output interfaces, peripheral
device interfaces, and an interconnecting bus structure.

As is further known, a computer may effectively extend
its CPU by using “cloud computing” to perform one or more
computing functions (e.g., a service, an application, an
algorithm, an arithmetic logic function, etc.) on behalf of the
computer. Further, for large services, applications, and/or
functions, cloud computing may be performed by multiple
cloud computing resources in a distributed manner to
improve the response time for completion of the service,
application, and/or function. For example, Hadoop is an
open source software framework that supports distributed
applications enabling application execution by thousands of
computers.

In addition to cloud computing, a computer may use
“cloud storage™ as part of its memory system. As is known,
cloud storage enables a user, via its computer, to store files,
applications, etc. on an Internet storage system. The Internet
storage system may include a RAID (redundant array of
independent disks) system and/or a dispersed storage system
that uses an error correction scheme to encode data for
storage.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a distributed computing system in accordance with the
present invention;

25

30

40

45

60

2

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the present invention;

FIG. 3 is a diagram of an example of a distributed storage
and task processing in accordance with the present inven-
tion;

FIG. 4 is a schematic block diagram of an embodiment of
an outbound distributed storage and/or task (DST) process-
ing in accordance with the present invention;

FIG. 5 is a logic diagram of an example of a method for
outbound DST processing in accordance with the present
invention;

FIG. 6 is a schematic block diagram of an embodiment of
a dispersed error encoding in accordance with the present
invention;

FIG. 7 is a diagram of an example of a segment processing
of the dispersed error encoding in accordance with the
present invention;

FIG. 8 is a diagram of an example of error encoding and
slicing processing of the dispersed error encoding in accor-
dance with the present invention;

FIG. 9 is a diagram of an example of grouping selection
processing of the outbound DST processing in accordance
with the present invention;

FIG. 10 is a diagram of an example of converting data into
slice groups in accordance with the present invention;

FIG. 11 is a schematic block diagram of an embodiment
of a DST execution unit in accordance with the present
invention;

FIG. 12 is a schematic block diagram of an example of
operation of a DST execution unit in accordance with the
present invention;

FIG. 13 is a schematic block diagram of an embodiment
of an inbound distributed storage and/or task (DST) pro-
cessing in accordance with the present invention;

FIG. 14 is a logic diagram of an example of a method for
inbound DST processing in accordance with the present
invention;

FIG. 15 is a diagram of an example of de-grouping
selection processing of the inbound DST processing in
accordance with the present invention;

FIG. 16 is a schematic block diagram of an embodiment
of a dispersed error decoding in accordance with the present
invention;

FIG. 17 is a diagram of an example of de-slicing and error
decoding processing of the dispersed error decoding in
accordance with the present invention;

FIG. 18 is a diagram of an example of a de-segment
processing of the dispersed error decoding in accordance
with the present invention;

FIG. 19 is a diagram of an example of converting slice
groups into data in accordance with the present invention;

FIG. 20 is a diagram of an example of a distributed
storage within the distributed computing system in accor-
dance with the present invention;

FIG. 21 is a schematic block diagram of an example of
operation of outbound distributed storage and/or task (DST)
processing for storing data in accordance with the present
invention;

FIG. 22 is a schematic block diagram of an example of a
dispersed error encoding for the example of FIG. 21 in
accordance with the present invention;

FIG. 23 is a diagram of an example of converting data into
pillar slice groups for storage in accordance with the present
invention;

FIG. 24 is a schematic block diagram of an example of a
storage operation of a DST execution unit in accordance
with the present invention;

US 9,456,035 B2

3

FIG. 25 is a schematic block diagram of an example of
operation of inbound distributed storage and/or task (DST)
processing for retrieving dispersed error encoded data in
accordance with the present invention;

FIG. 26 is a schematic block diagram of an example of a
dispersed error decoding for the example of FIG. 25 in
accordance with the present invention;

FIG. 27 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module storing a plurality of data and a plurality of task
codes in accordance with the present invention;

FIG. 28 is a schematic block diagram of an example of the
distributed computing system performing tasks on stored
data in accordance with the present invention;

FIG. 29 is a schematic block diagram of an embodiment
of a task distribution module facilitating the example of FIG.
28 in accordance with the present invention;

FIG. 30 is a diagram of a specific example of the
distributed computing system performing tasks on stored
data in accordance with the present invention;

FIG. 31 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module storing data and task codes for the example of FIG.
30 in accordance with the present invention;

FIG. 32 is a diagram of an example of DST allocation
information for the example of FIG. 30 in accordance with
the present invention;

FIGS. 33-38 are schematic block diagrams of the DSTN
module performing the example of FIG. 30 in accordance
with the present invention;

FIG. 39 is a diagram of an example of combining result
information into final results for the example of FIG. 30 in
accordance with the present invention;

FIG. 40A is a schematic block diagram of an embodiment
of a dispersed storage network (DSN) system in accordance
with the present invention;

FIG. 40B is a flowchart illustrating an example of updat-
ing dispersed storage network (DSN) addressing in accor-
dance with the present invention;

FIG. 41 is a flowchart illustrating another example of
updating dispersed storage network addressing in accor-
dance with the present invention;

FIG. 42A is a schematic block diagram of another
embodiment of a dispersed storage network (DSN) system
in accordance with the present invention;

FIG. 42B is a flowchart illustrating an example of access-
ing a dispersed storage (DS) unit in accordance with the
present invention;

FIG. 43A is a schematic block diagram of another
embodiment of a dispersed storage network (DSN) system
in accordance with the present invention;

FIG. 43B is a flowchart illustrating an example of updat-
ing storage information in accordance with the present
invention;

FIG. 44A is a schematic block diagram of another
embodiment of a dispersed storage network (DSN) system
in accordance with the present invention;

FIG. 44B is a flowchart illustrating an example of tracking
slice location information in accordance with the present
invention;

FIG. 45A is a schematic block diagram of an embodiment
of a zero expansion all or nothing transformation (AONT)
system in accordance with the present invention;

FIG. 45B is a flowchart illustrating an example of trans-
forming data in accordance with the present invention;

FIG. 45C is a flowchart illustrating an example of de-
transforming data in accordance with the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIGS. 46A, 46C, 46D, and 46E are schematic block
diagrams of another embodiment of a dispersed storage
network (DSN) system illustrating an example of storing
related data in accordance with the present invention;

FIG. 46B is a schematic block diagram of another
embodiment of a distributed storage and task (DST) client
module further illustrating the example of the storing the
related data in accordance with the present invention;

FIG. 46F is a flowchart illustrating an example of storing
related data in accordance with the present invention; and

FIG. 47 is a flowchart illustrating an example of synchro-
nously storing two or more data objects in a dispersed
storage network (DSN) in accordance with the present
invention.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a schematic block diagram of an embodiment of
a distributed computing system 10 that includes a user
device 12 and/or a user device 14, a distributed storage
and/or task (DST) processing unit 16, a distributed storage
and/or task network (DSTN) managing unit 18, a DST
integrity processing unit 20, and a distributed storage and/or
task network (DSTN) module 22. The components of the
distributed computing system 10 are coupled via a network
24, which may include one or more wireless and/or wire
lined communication systems; one or more private intranet
systems and/or public internet systems; and/or one or more
local area networks (LLAN) and/or wide area networks
(WAN).

The DSTN module 22 includes a plurality of distributed
storage and/or task (DST) execution units 36 that may be
located at geographically different sites (e.g., one in Chi-
cago, one in Milwaukee, etc.). Each of the DST execution
units is operable to store dispersed error encoded data and/or
to execute, in a distributed manner, one or more tasks on
data. The tasks may be a simple function (e.g., a mathemati-
cal function, a logic function, an identify function, a find
function, a search engine function, a replace function, etc.),
a complex function (e.g., compression, human and/or com-
puter language translation, text-to-voice conversion, voice-
to-text conversion, etc.), multiple simple and/or complex
functions, one or more algorithms, one or more applications,
etc.

Each of the user devices 12-14, the DST processing unit
16, the DSTN managing unit 18, and the DST integrity
processing unit 20 include a computing core 26 and may be
a portable computing device and/or a fixed computing
device. A portable computing device may be a social net-
working device, a gaming device, a cell phone, a smart
phone, a personal digital assistant, a digital music player, a
digital video player, a laptop computer, a handheld com-
puter, a tablet, a video game controller, and/or any other
portable device that includes a computing core. A fixed
computing device may be a personal computer (PC), a
computer server, a cable set-top box, a satellite receiver, a
television set, a printer, a fax machine, home entertainment
equipment, a video game console, and/or any type of home
or office computing equipment. User device 12 and DST
processing unit 16 are configured to include a DST client
module 34.

With respect to interfaces, each interface 30, 32, and 33
includes software and/or hardware to support one or more
communication links via the network 24 indirectly and/or
directly. For example, interface 30 supports a communica-
tion link (e.g., wired, wireless, direct, via a LAN, via the

US 9,456,035 B2

5

network 24, etc.) between user device 14 and the DST
processing unit 16. As another example, interface 32 sup-
ports communication links (e.g., a wired connection, a
wireless connection, a LAN connection, and/or any other
type of connection to/from the network 24) between user
device 12 and the DSTN module 22 and between the DST
processing unit 16 and the DSTN module 22. As yet another
example, interface 33 supports a communication link for
each of the DSTN managing unit 18 and DST integrity
processing unit 20 to the network 24.

The distributed computing system 10 is operable to sup-
port dispersed storage (DS) error encoded data storage and
retrieval, to support distributed task processing on received
data, and/or to support distributed task processing on stored
data. In general and with respect to DS error encoded data
storage and retrieval, the distributed computing system 10
supports three primary operations: storage management,
data storage and retrieval (an example of which will be
discussed with reference to FIGS. 20-26), and data storage
integrity verification. In accordance with these three primary
functions, data can be encoded, distributedly stored in
physically different locations, and subsequently retrieved in
a reliable and secure manner. Such a system is tolerant of a
significant number of failures (e.g., up to a failure level,
which may be greater than or equal to a pillar width minus
a decode threshold minus one) that may result from indi-
vidual storage device failures and/or network equipment
failures without loss of data and without the need for a
redundant or backup copy. Further, the system allows the
data to be stored for an indefinite period of time without data
loss and does so in a secure manner (e.g., the system is very
resistant to attempts at hacking the data).

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, if a second type of user device 14 has data 40 to
store in the DSTN module 22, it sends the data 40 to the DST
processing unit 16 via its interface 30. The interface 30
functions to mimic a conventional operating system (OS)
file system interface (e.g., network file system (NFS), flash
file system (FFS), disk file system (DFS), file transfer
protocol (FTP), web-based distributed authoring and ver-
sioning (WebDAV), etc.) and/or a block memory interface
(e.g., small computer system interface (SCSI), internet small
computer system interface (iSCSI), etc.). In addition, the
interface 30 may attach a user identification code (ID) to the
data 40.

To support storage management, the DSTN managing
unit 18 performs DS management services. One such DS
management service includes the DSTN managing unit 18
establishing distributed data storage parameters (e.g., vault
creation, distributed storage parameters, security param-
eters, billing information, user profile information, etc.) for
a user device 12-14 individually or as part of a group of user
devices. For example, the DSTN managing unit 18 coordi-
nates creation of a vault (e.g., a virtual memory block)
within memory of the DSTN module 22 for a user device,
a group of devices, or for public access and establishes per
vault dispersed storage (DS) error encoding parameters for
a vault. The DSTN managing unit 18 may facilitate storage
of DS error encoding parameters for each vault of a plurality
of vaults by updating registry information for the distributed
computing system 10. The facilitating includes storing
updated registry information in one or more of the DSTN
module 22, the user device 12, the DST processing unit 16,
and the DST integrity processing unit 20.

The DS error encoding parameters (e.g., or dispersed
storage error coding parameters) include data segmenting

5

10

15

20

25

30

35

40

45

50

55

60

65

6

information (e.g., how many segments data (e.g., a file, a
group of files, a data block, etc.) is divided into), segment
security information (e.g., per segment encryption, compres-
sion, integrity checksum, etc.), error coding information
(e.g., pillar width, decode threshold, read threshold, write
threshold, etc.), slicing information (e.g., the number of
encoded data slices that will be created for each data
segment); and slice security information (e.g., per encoded
data slice encryption, compression, integrity checksum,
etc.).

The DSTN managing unit 18 creates and stores user
profile information (e.g., an access control list (ACL)) in
local memory and/or within memory of the DSTN module
22. The user profile information includes authentication
information, permissions, and/or the security parameters.
The security parameters may include encryption/decryption
scheme, one or more encryption keys, key generation
scheme, and/or data encoding/decoding scheme.

The DSTN managing unit 18 creates billing information
for a particular user, a user group, a vault access, public vault
access, etc. For instance, the DSTN managing unit 18 tracks
the number of times a user accesses a private vault and/or
public vaults, which can be used to generate a per-access
billing information. In another instance, the DSTN manag-
ing unit 18 tracks the amount of data stored and/or retrieved
by a user device and/or a user group, which can be used to
generate a per-data-amount billing information.

Another DS management service includes the DSTN
managing unit 18 performing network operations, network
administration, and/or network maintenance. Network
operations includes authenticating user data allocation
requests (e.g., read and/or write requests), managing cre-
ation of vaults, establishing authentication credentials for
user devices, adding/deleting components (e.g., user
devices, DST execution units, and/or DST processing units)
from the distributed computing system 10, and/or establish-
ing authentication credentials for DST execution units 36.
Network administration includes monitoring devices and/or
units for failures, maintaining vault information, determin-
ing device and/or unit activation status, determining device
and/or unit loading, and/or determining any other system
level operation that affects the performance level of the
system 10. Network maintenance includes facilitating
replacing, upgrading, repairing, and/or expanding a device
and/or unit of the system 10.

To support data storage integrity verification within the
distributed computing system 10, the DST integrity process-
ing unit 20 performs rebuilding of ‘bad’ or missing encoded
data slices. At a high level, the DST integrity processing unit
20 performs rebuilding by periodically attempting to
retrieve/list encoded data slices, and/or slice names of the
encoded data slices, from the DSTN module 22. For
retrieved encoded slices, they are checked for errors due to
data corruption, outdated version, etc. If a slice includes an
error, it is flagged as a ‘bad’ slice. For encoded data slices
that were not received and/or not listed, they are flagged as
missing slices. Bad and/or missing slices are subsequently
rebuilt using other retrieved encoded data slices that are
deemed to be good slices to produce rebuilt slices. The
rebuilt slices are stored in memory of the DSTN module 22.
Note that the DST integrity processing unit 20 may be a
separate unit as shown, it may be included in the DSTN
module 22, it may be included in the DST processing unit
16, and/or distributed among the DST execution units 36.

To support distributed task processing on received data,
the distributed computing system 10 has two primary opera-
tions: DST (distributed storage and/or task processing) man-

US 9,456,035 B2

7

agement and DST execution on received data (an example of
which will be discussed with reference to FIGS. 3-19). With
respect to the storage portion of the DST management, the
DSTN managing unit 18 functions as previously described.
With respect to the tasking processing of the DST manage-
ment, the DSTN managing unit 18 performs distributed task
processing (DTP) management services. One such DTP
management service includes the DSTN managing unit 18
establishing DTP parameters (e.g., user-vault affiliation
information, billing information, user-task information, etc.)
for a user device 12-14 individually or as part of a group of
user devices.

Another DTP management service includes the DSTN
managing unit 18 performing DTP network operations,
network administration (which is essentially the same as
described above), and/or network maintenance (which is
essentially the same as described above). Network opera-
tions include, but are not limited to, authenticating user task
processing requests (e.g., valid request, valid user, etc.),
authenticating results and/or partial results, establishing
DTP authentication credentials for user devices, adding/
deleting components (e.g., user devices, DST execution
units, and/or DST processing units) from the distributed
computing system, and/or establishing DTP authentication
credentials for DST execution units.

To support distributed task processing on stored data, the
distributed computing system 10 has two primary opera-
tions: DST (distributed storage and/or task) management
and DST execution on stored data. With respect to the DST
execution on stored data, if the second type of user device
14 has a task request 38 for execution by the DSTN module
22, it sends the task request 38 to the DST processing unit
16 via its interface 30. An example of DST execution on
stored data will be discussed in greater detail with reference
to FIGS. 27-39. With respect to the DST management, it is
substantially similar to the DST management to support
distributed task processing on received data.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50,
a memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (IO) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface module 60, at least one 10 device interface module
62, a read only memory (ROM) basic input output system
(BIOS) 64, and one or more memory interface modules. The
one or more memory interface module(s) includes one or
more of a universal serial bus (USB) interface module 66, a
host bus adapter (HBA) interface module 68, a network
interface module 70, a flash interface module 72, a hard
drive interface module 74, and a DSTN interface module 76.

The DSTN interface module 76 functions to mimic a
conventional operating system (OS) file system interface
(e.g., network file system (NFS), flash file system (FFS),
disk file system (DFS), file transfer protocol (FTP), web-
based distributed authoring and versioning (WebDAV), etc.)
and/or a block memory interface (e.g., small computer
system interface (SCSI), internet small computer system
interface (iSCSI), etc.). The DSTN interface module 76
and/or the network interface module 70 may function as the
interface 30 of the user device 14 of FIG. 1. Further note that
the 10 device interface module 62 and/or the memory
interface modules may be collectively or individually
referred to as 10 ports.

FIG. 3 is a diagram of an example of the distributed
computing system performing a distributed storage and task
processing operation. The distributed computing system
includes a DST (distributed storage and/or task) client

25

40

45

50

8

module 34 (which may be in user device 14 and/or in DST
processing unit 16 of FIG. 1), a network 24, a plurality of
DST execution units 1-n that includes two or more DST
execution units 36 of FIG. 1 (which form at least a portion
of DSTN module 22 of FIG. 1), a DST managing module
(not shown), and a DST integrity verification module (not
shown). The DST client module 34 includes an outbound
DST processing section 80 and an inbound DST processing
section 82. Each of the DST execution units 1-n includes a
controller 86, a processing module 84, memory 88, a DT
(distributed task) execution module 90, and a DST client
module 34.

In an example of operation, the DST client module 34
receives data 92 and one or more tasks 94 to be performed
upon the data 92. The data 92 may be of any size and of any
content, where, due to the size (e.g., greater than a few
Terra-Bytes), the content (e.g., secure data, etc.), and/or
task(s) (e.g., MIPS intensive), distributed processing of the
task(s) on the data is desired. For example, the data 92 may
be one or more digital books, a copy of a company’s emails,
a large-scale Internet search, a video security file, one or
more entertainment video files (e.g., television programs,
movies, etc.), data files, and/or any other large amount of
data (e.g., greater than a few Terra-Bytes).

Within the DST client module 34, the outbound DST
processing section 80 receives the data 92 and the task(s) 94.
The outbound DST processing section 80 processes the data
92 to produce slice groupings 96. As an example of such
processing, the outbound DST processing section 80 parti-
tions the data 92 into a plurality of data partitions. For each
data partition, the outbound DST processing section 80
dispersed storage (DS) error encodes the data partition to
produce encoded data slices and groups the encoded data
slices into a slice grouping 96. In addition, the outbound
DST processing section 80 partitions the task 94 into partial
tasks 98, where the number of partial tasks 98 may corre-
spond to the number of slice groupings 96.

The outbound DST processing section 80 then sends, via
the network 24, the slice groupings 96 and the partial tasks
98 to the DST execution units 1-n of the DSTN module 22
of FIG. 1. For example, the outbound DST processing
section 80 sends slice group 1 and partial task 1 to DST
execution unit 1. As another example, the outbound DST
processing section 80 sends slice group #n and partial task
#n to DST execution unit #n.

Each DST execution unit performs its partial task 98 upon
its slice group 96 to produce partial results 102. For
example, DST execution unit #1 performs partial task #1 on
slice group #1 to produce a partial result #1, for results. As
a more specific example, slice group #1 corresponds to a
data partition of a series of digital books and the partial task
#1 corresponds to searching for specific phrases, recording
where the phrase is found, and establishing a phrase count.
In this more specific example, the partial result #1 includes
information as to where the phrase was found and includes
the phrase count.

Upon completion of generating their respective partial
results 102, the DST execution units send, via the network
24, their partial results 102 to the inbound DST processing
section 82 of the DST client module 34. The inbound DST
processing section 82 processes the received partial results
102 to produce a result 104. Continuing with the specific
example of the preceding paragraph, the inbound DST
processing section 82 combines the phrase count from each
of the DST execution units 36 to produce a total phrase
count. In addition, the inbound DST processing section 82
combines the ‘where the phrase was found’ information

US 9,456,035 B2

9

from each of the DST execution units 36 within their
respective data partitions to produce ‘where the phrase was
found’ information for the series of digital books.

In another example of operation, the DST client module
34 requests retrieval of stored data within the memory of the
DST execution units 36 (e.g., memory of the DSTN mod-
ule). In this example, the task 94 is retrieve data stored in the
memory of the DSTN module. Accordingly, the outbound
DST processing section 80 converts the task 94 into a
plurality of partial tasks 98 and sends the partial tasks 98 to
the respective DST execution units 1-n.

In response to the partial task 98 of retrieving stored data,
a DST execution unit 36 identifies the corresponding
encoded data slices 100 and retrieves them. For example,
DST execution unit #1 receives partial task #1 and retrieves,
in response thereto, retrieved slices #1. The DST execution
units 36 send their respective retrieved slices 100 to the
inbound DST processing section 82 via the network 24.

The inbound DST processing section 82 converts the
retrieved slices 100 into data 92. For example, the inbound
DST processing section 82 de-groups the retrieved slices
100 to produce encoded slices per data partition. The
inbound DST processing section 82 then DS error decodes
the encoded slices per data partition to produce data parti-
tions. The inbound DST processing section 82 de-partitions
the data partitions to recapture the data 92.

FIG. 4 is a schematic block diagram of an embodiment of
an outbound distributed storage and/or task (DST) process-
ing section 80 of a DST client module 34 FIG. 1 coupled to
a DSTN module 22 of a FIG. 1 (e.g., a plurality of n DST
execution units 36) via a network 24. The outbound DST
processing section 80 includes a data partitioning module
110, a dispersed storage (DS) error encoding module 112, a
grouping selector module 114, a control module 116, and a
distributed task control module 118.

In an example of operation, the data partitioning module
110 partitions data 92 into a plurality of data partitions 120.
The number of partitions and the size of the partitions may
be selected by the control module 116 via control 160 based
on the data 92 (e.g., its size, its content, etc.), a correspond-
ing task 94 to be performed (e.g., simple, complex, single
step, multiple steps, etc.), DS encoding parameters (e.g.,
pillar width, decode threshold, write threshold, segment
security parameters, slice security parameters, etc.), capa-
bilities of the DST execution units 36 (e.g., processing
resources, availability of processing recourses, etc.), and/or
as may be inputted by a user, system administrator, or other
operator (human or automated). For example, the data
partitioning module 110 partitions the data 92 (e.g., 100
Terra-Bytes) into 100,000 data segments, each being 1
Giga-Byte in size. Alternatively, the data partitioning mod-
ule 110 partitions the data 92 into a plurality of data
segments, where some of data segments are of a different
size, are of the same size, or a combination thereof.

The DS error encoding module 112 receives the data
partitions 120 in a serial manner, a parallel manner, and/or
a combination thereof. For each data partition 120, the DS
error encoding module 112 DS error encodes the data
partition 120 in accordance with control information 160
from the control module 116 to produce encoded data slices
122. The DS error encoding includes segmenting the data
partition into data segments, segment security processing
(e.g., encryption, compression, watermarking, integrity
check (e.g., CRC), etc.), error encoding, slicing, and/or per
slice security processing (e.g., encryption, compression,
watermarking, integrity check (e.g., CRC), etc.). The control
information 160 indicates which steps of the DS error

10

15

20

25

30

35

40

45

50

55

60

65

10

encoding are active for a given data partition and, for active
steps, indicates the parameters for the step. For example, the
control information 160 indicates that the error encoding is
active and includes error encoding parameters (e.g., pillar
width, decode threshold, write threshold, read threshold,
type of error encoding, etc.).

The grouping selector module 114 groups the encoded
slices 122 of a data partition into a set of slice groupings 96.
The number of slice groupings corresponds to the number of
DST execution units 36 identified for a particular task 94.
For example, if five DST execution units 36 are identified for
the particular task 94, the group selecting module groups the
encoded slices 122 of a data partition into five slice group-
ings 96. The grouping selector module 114 outputs the slice
groupings 96 to the corresponding DST execution units 36
via the network 24.

The distributed task control module 118 receives the task
94 and converts the task 94 into a set of partial tasks 98. For
example, the distributed task control module 118 receives a
task to find where in the data (e.g., a series of books) a phrase
occurs and a total count of the phrase usage in the data. In
this example, the distributed task control module 118 rep-
licates the task 94 for each DST execution unit 36 to produce
the partial tasks 98. In another example, the distributed task
control module 118 receives a task to find where in the data
a first phrase occurs, where in the data a second phrase
occurs, and a total count for each phrase usage in the data.
In this example, the distributed task control module 118
generates a first set of partial tasks 98 for finding and
counting the first phrase and a second set of partial tasks for
finding and counting the second phrase. The distributed task
control module 118 sends respective first and/or second
partial tasks 98 to each DST execution unit 36.

FIG. 5 is a logic diagram of an example of a method for
outbound distributed storage and task (DST) processing that
begins at step 126 where a DST client module receives data
and one or more corresponding tasks. The method continues
at step 128 where the DST client module determines a
number of DST units to support the task for one or more data
partitions. For example, the DST client module may deter-
mine the number of DST units to support the task based on
the size of the data, the requested task, the content of the
data, a predetermined number (e.g., user indicated, system
administrator determined, etc.), available DST units, capa-
bility of the DST units, and/or any other factor regarding
distributed task processing of the data. The DST client
module may select the same DST units for each data
partition, may select different DST units for the data parti-
tions, or a combination thereof.

The method continues at step 130 where the DST client
module determines processing parameters of the data based
on the number of DST units selected for distributed task
processing. The processing parameters include data parti-
tioning information, DS encoding parameters, and/or slice
grouping information. The data partitioning information
includes a number of data partitions, size of each data
partition, and/or organization of the data partitions (e.g.,
number of data blocks in a partition, the size of the data
blocks, and arrangement of the data blocks). The DS encod-
ing parameters include segmenting information, segment
security information, error encoding information (e.g., dis-
persed storage error encoding function parameters including
one or more of pillar width, decode threshold, write thresh-
old, read threshold, generator matrix), slicing information,
and/or per slice security information. The slice grouping
information includes information regarding how to arrange
the encoded data slices into groups for the selected DST

US 9,456,035 B2

11

units. As a specific example, if the DST client module
determines that five DST units are needed to support the
task, then it determines that the error encoding parameters
include a pillar width of five and a decode threshold of three.

The method continues at step 132 where the DST client
module determines task partitioning information (e.g., how
to partition the tasks) based on the selected DST units and
data processing parameters. The data processing parameters
include the processing parameters and DST unit capability
information. The DST unit capability information includes
the number of DT (distributed task) execution units, execu-
tion capabilities of each DT execution unit (e.g., MIPS
capabilities, processing resources (e.g., quantity and capa-
bility of microprocessors, CPUs, digital signal processors,
co-processor, microcontrollers, arithmetic logic circuitry,
and/or any other analog and/or digital processing circuitry),
availability of the processing resources, memory informa-
tion (e.g., type, size, availability, etc.)), and/or any informa-
tion germane to executing one or more tasks.

The method continues at step 134 where the DST client
module processes the data in accordance with the processing
parameters to produce slice groupings. The method contin-
ues at step 136 where the DST client module partitions the
task based on the task partitioning information to produce a
set of partial tasks. The method continues at step 138 where
the DST client module sends the slice groupings and the
corresponding partial tasks to respective DST units.

FIG. 6 is a schematic block diagram of an embodiment of
the dispersed storage (DS) error encoding module 112 of an
outbound distributed storage and task (DST) processing
section. The DS error encoding module 112 includes a
segment processing module 142, a segment security pro-
cessing module 144, an error encoding module 146, a slicing
module 148, and a per slice security processing module 150.
Each of these modules is coupled to a control module 116 to
receive control information 160 therefrom.

In an example of operation, the segment processing
module 142 receives a data partition 120 from a data
partitioning module and receives segmenting information as
the control information 160 from the control module 116.
The segmenting information indicates how the segment
processing module 142 is to segment the data partition 120.
For example, the segmenting information indicates how
many rows to segment the data based on a decode threshold
of an error encoding scheme, indicates how many columns
to segment the data into based on a number and size of data
blocks within the data partition 120, and indicates how many
columns to include in a data segment 152. The segment
processing module 142 segments the data 120 into data
segments 152 in accordance with the segmenting informa-
tion.

The segment security processing module 144, when
enabled by the control module 116, secures the data seg-
ments 152 based on segment security information received
as control information 160 from the control module 116. The
segment security information includes data compression,
encryption, watermarking, integrity check (e.g., cyclic
redundancy check (CRC), etc.), and/or any other type of
digital security. For example, when the segment security
processing module 144 is enabled, it may compress a data
segment 152, encrypt the compressed data segment, and
generate a CRC value for the encrypted data segment to
produce a secure data segment 154. When the segment
security processing module 144 is not enabled, it passes the
data segments 152 to the error encoding module 146 or is
bypassed such that the data segments 152 are provided to the
error encoding module 146.

30

40

45

50

12

The error encoding module 146 encodes the secure data
segments 154 in accordance with error correction encoding
parameters received as control information 160 from the
control module 116. The error correction encoding param-
eters (e.g., also referred to as dispersed storage error coding
parameters) include identifying an error correction encoding
scheme (e.g., forward error correction algorithm, a Reed-
Solomon based algorithm, an online coding algorithm, an
information dispersal algorithm, etc.), a pillar width, a
decode threshold, a read threshold, a write threshold, etc.
For example, the error correction encoding parameters iden-
tify a specific error correction encoding scheme, specifies a
pillar width of five, and specifies a decode threshold of three.
From these parameters, the error encoding module 146
encodes a data segment 154 to produce an encoded data
segment 156.

The slicing module 148 slices the encoded data segment
156 in accordance with the pillar width of the error correc-
tion encoding parameters received as control information
160. For example, if the pillar width is five, the slicing
module 148 slices an encoded data segment 156 into a set of
five encoded data slices. As such, for a plurality of encoded
data segments 156 for a given data partition, the slicing
module outputs a plurality of sets of encoded data slices 158.

The per slice security processing module 150, when
enabled by the control module 116, secures each encoded
data slice 158 based on slice security information received
as control information 160 from the control module 116. The
slice security information includes data compression,
encryption, watermarking, integrity check (e.g., CRC, etc.),
and/or any other type of digital security. For example, when
the per slice security processing module 150 is enabled, it
compresses an encoded data slice 158, encrypts the com-
pressed encoded data slice, and generates a CRC value for
the encrypted encoded data slice to produce a secure
encoded data slice 122. When the per slice security process-
ing module 150 is not enabled, it passes the encoded data
slices 158 or is bypassed such that the encoded data slices
158 are the output of the DS error encoding module 112.
Note that the control module 116 may be omitted and each
module stores its own parameters.

FIG. 7 is a diagram of an example of a segment processing
of a dispersed storage (DS) error encoding module. In this
example, a segment processing module 142 receives a data
partition 120 that includes 45 data blocks (e.g., d1-d45),
receives segmenting information (i.e., control information
160) from a control module, and segments the data partition
120 in accordance with the control information 160 to
produce data segments 152. Each data block may be of the
same size as other data blocks or of a different size. In
addition, the size of each data block may be a few bytes to
megabytes of data. As previously mentioned, the segmenting
information indicates how many rows to segment the data
partition into, indicates how many columns to segment the
data partition into, and indicates how many columns to
include in a data segment.

In this example, the decode threshold of the error encod-
ing scheme is three; as such the number of rows to divide the
data partition into is three. The number of columns for each
row is set to 15, which is based on the number and size of
data blocks. The data blocks of the data partition are
arranged in rows and columns in a sequential order (i.e., the
first row includes the first 15 data blocks; the second row
includes the second 15 data blocks; and the third row
includes the last 15 data blocks).

With the data blocks arranged into the desired sequential
order, they are divided into data segments based on the

US 9,456,035 B2

13

segmenting information. In this example, the data partition
is divided into 8 data segments; the first 7 include 2 columns
of three rows and the last includes 1 column of three rows.
Note that the first row of the 8 data segments is in sequential
order of the first 15 data blocks; the second row of the 8 data
segments in sequential order of the second 15 data blocks;
and the third row of the 8 data segments in sequential order
of the last 15 data blocks. Note that the number of data
blocks, the grouping of the data blocks into segments, and
size of the data blocks may vary to accommodate the desired
distributed task processing function.

FIG. 8 is a diagram of an example of error encoding and
slicing processing of the dispersed error encoding process-
ing the data segments of FIG. 7. In this example, data
segment 1 includes 3 rows with each row being treated as
one word for encoding. As such, data segment 1 includes
three words for encoding: word 1 including data blocks d1
and d2, word 2 including data blocks d16 and d17, and word
3 including blocks d31 and d32. Each of data segments 2-7
includes three words where each word includes two data
blocks. Data segment 8 includes three words where each
word includes a single data block (e.g., d15, d30, and d45).

In operation, an error encoding module 146 and a slicing
module 148 convert each data segment into a set of encoded
data slices in accordance with error correction encoding
parameters as control information 160. More specifically,
when the error correction encoding parameters indicate a
unity matrix Reed-Solomon based encoding algorithm, 5
pillars, and decode threshold of 3, the first three encoded
data slices of the set of encoded data slices for a data
segment are substantially similar to the corresponding word
of the data segment. For instance, when the unity matrix
Reed-Solomon based encoding algorithm is applied to data
segment 1, the content of the first encoded data slice
(DS1_d1&2) of the first set of encoded data slices (e.g.,
corresponding to data segment 1) is substantially similar to
content of the first word (e.g., d1 & d2); the content of the
second encoded data slice (DS1_d16&17) of the first set of
encoded data slices is substantially similar to content of the
second word (e.g., d16 & d17); and the content of the third
encoded data slice (DS1_d31&32) of the first set of encoded
data slices is substantially similar to content of the third
word (e.g., d31 & d32).

The content of the fourth and fifth encoded data slices
(e.g., ES1_1 and ES1_2) of the first set of encoded data
slices include error correction data based on the first-third
words of the first data segment. With such an encoding and
slicing scheme, retrieving any three of the five encoded data
slices allows the data segment to be accurately recon-
structed.

The encoding and slicing of data segments 2-7 yield sets
of encoded data slices similar to the set of encoded data
slices of data segment 1. For instance, the content of the first
encoded data slice (DS2_d3&4) of the second set of encoded
data slices (e.g., corresponding to data segment 2) is sub-
stantially similar to content of the first word (e.g., d3 & d4);
the content of the second encoded data slice (DS2_d18&19)
of the second set of encoded data slices is substantially
similar to content of the second word (e.g., d18 & d19); and
the content of the third encoded data slice (DS2_d33&34) of
the second set of encoded data slices is substantially similar
to content of the third word (e.g., d33 & d34). The content
of the fourth and fifth encoded data slices (e.g., ES1_1 and
ES1_2) of the second set of encoded data slices includes
error correction data based on the first-third words of the
second data segment.

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 9 is a diagram of an example of grouping selection
processing of an outbound distributed storage and task
(DST) processing in accordance with group selection infor-
mation as control information 160 from a control module.
Encoded slices for data partition 122 are grouped in accor-
dance with the control information 160 to produce slice
groupings 96. In this example, a grouping selector module
114 organizes the encoded data slices into five slice group-
ings (e.g., one for each DST execution unit of a distributed
storage and task network (DSTN) module). As a specific
example, the grouping selector module 114 creates a first
slice grouping for a DST execution unit #1, which includes
first encoded slices of each of the sets of encoded slices. As
such, the first DST execution unit receives encoded data
slices corresponding to data blocks 1-15 (e.g., encoded data
slices of contiguous data).

The grouping selector module 114 also creates a second
slice grouping for a DST execution unit #2, which includes
second encoded slices of each of the sets of encoded slices.
As such, the second DST execution unit receives encoded
data slices corresponding to data blocks 16-30. The grouping
selector module 114 further creates a third slice grouping for
DST execution unit #3, which includes third encoded slices
of each of the sets of encoded slices. As such, the third DST
execution unit receives encoded data slices corresponding to
data blocks 31-45.

The grouping selector module 114 creates a fourth slice
grouping for DST execution unit #4, which includes fourth
encoded slices of each of the sets of encoded slices. As such,
the fourth DST execution unit receives encoded data slices
corresponding to first error encoding information (e.g.,
encoded data slices of error coding (EC) data). The grouping
selector module 114 further creates a fifth slice grouping for
DST execution unit #5, which includes fifth encoded slices
of each of the sets of encoded slices. As such, the fifth DST
execution unit receives encoded data slices corresponding to
second error encoding information.

FIG. 10 is a diagram of an example of converting data 92
into slice groups that expands on the preceding figures. As
shown, the data 92 is partitioned in accordance with a
partitioning function 164 into a plurality of data partitions
(1-x, where x is an integer greater than 4). Each data
partition (or chunkset of data) is encoded and grouped into
slice groupings as previously discussed by an encoding and
grouping function 166. For a given data partition, the slice
groupings are sent to distributed storage and task (DST)
execution units. From data partition to data partition, the
ordering of the slice groupings to the DST execution units
may vary.

For example, the slice groupings of data partition #1 is
sent to the DST execution units such that the first DST
execution receives first encoded data slices of each of the
sets of encoded data slices, which corresponds to a first
continuous data chunk of the first data partition (e.g., refer
to FIG. 9), a second DST execution receives second encoded
data slices of each of the sets of encoded data slices, which
corresponds to a second continuous data chunk of the first
data partition, etc.

For the second data partition, the slice groupings may be
sent to the DST execution units in a different order than it
was done for the first data partition. For instance, the first
slice grouping of the second data partition (e.g., slice group
2_1) is sent to the second DST execution unit; the second
slice grouping of the second data partition (e.g., slice group
2_2) is sent to the third DST execution unit; the third slice
grouping of the second data partition (e.g., slice group 2_3)
is sent to the fourth DST execution unit; the fourth slice

US 9,456,035 B2

15
grouping of the second data partition (e.g., slice group 2_4,
which includes first error coding information) is sent to the
fifth DST execution unit; and the fifth slice grouping of the
second data partition (e.g., slice group 2_5, which includes
second error coding information) is sent to the first DST
execution unit.

The pattern of sending the slice groupings to the set of
DST execution units may vary in a predicted pattern, a
random pattern, and/or a combination thereof from data
partition to data partition. In addition, from data partition to
data partition, the set of DST execution units may change.
For example, for the first data partition, DST execution units
1-5 may be used; for the second data partition, DST execu-
tion units 6-10 may be used; for the third data partition, DST
execution units 3-7 may be used; etc. As is also shown, the
task is divided into partial tasks that are sent to the DST
execution units in conjunction with the slice groupings of
the data partitions.

FIG. 11 is a schematic block diagram of an embodiment
of'a DST (distributed storage and/or task) execution unit that
includes an interface 169, a controller 86, memory 88, one
or more DT (distributed task) execution modules 90, and a
DST client module 34. The memory 88 is of sufficient size
to store a significant number of encoded data slices (e.g.,
thousands of slices to hundreds-of-millions of slices) and
may include one or more hard drives and/or one or more
solid-state memory devices (e.g., flash memory, DRAM,
etc.).

In an example of storing a slice group, the DST execution
module receives a slice grouping 96 (e.g., slice group #1) via
interface 169. The slice grouping 96 includes, per partition,
encoded data slices of contiguous data or encoded data slices
of error coding (EC) data. For slice group #1, the DST
execution module receives encoded data slices of contiguous
data for partitions #1 and #x (and potentially others between
3 and x) and receives encoded data slices of EC data for
partitions #2 and #3 (and potentially others between 3 and
x). Examples of encoded data slices of contiguous data and
encoded data slices of error coding (EC) data are discussed
with reference to FIG. 9. The memory 88 stores the encoded
data slices of slice groupings 96 in accordance with memory
control information 174 it receives from the controller 86.

The controller 86 (e.g., a processing module, a CPU, etc.)
generates the memory control information 174 based on a
partial task(s) 98 and distributed computing information
(e.g., user information (e.g., user 1D, distributed computing
permissions, data access permission, etc.), vault information
(e.g., virtual memory assigned to user, user group, tempo-
rary storage for task processing, etc.), task validation infor-
mation, etc.). For example, the controller 86 interprets the
partial task(s) 98 in light of the distributed computing
information to determine whether a requestor is authorized
to perform the task 98, is authorized to access the data,
and/or is authorized to perform the task on this particular
data. When the requestor is authorized, the controller 86
determines, based on the task 98 and/or another input,
whether the encoded data slices of the slice grouping 96 are
to be temporarily stored or permanently stored. Based on the
foregoing, the controller 86 generates the memory control
information 174 to write the encoded data slices of the slice
grouping 96 into the memory 88 and to indicate whether the
slice grouping 96 is permanently stored or temporarily
stored.

With the slice grouping 96 stored in the memory 88, the
controller 86 facilitates execution of the partial task(s) 98. In
an example, the controller 86 interprets the partial task 98 in
light of the capabilities of the DT execution module(s) 90.

10

15

20

25

30

35

40

45

50

55

60

65

16

The capabilities include one or more of MIPS capabilities,
processing resources (e.g., quantity and capability of micro-
processors, CPUs, digital signal processors, co-processor,
microcontrollers, arithmetic logic circuitry, and/or any other
analog and/or digital processing circuitry), availability of the
processing resources, etc. If the controller 86 determines that
the DT execution module(s) 90 have sufficient capabilities,
it generates task control information 176.

The task control information 176 may be a generic
instruction (e.g., perform the task on the stored slice group-
ing) or a series of operational codes. In the former instance,
the DT execution module 90 includes a co-processor func-
tion specifically configured (fixed or programmed) to per-
form the desired task 98. In the latter instance, the DT
execution module 90 includes a general processor topology
where the controller stores an algorithm corresponding to
the particular task 98. In this instance, the controller 86
provides the operational codes (e.g., assembly language,
source code of a programming language, object code, etc.)
of the algorithm to the DT execution module 90 for execu-
tion.

Depending on the nature of the task 98, the DT execution
module 90 may generate intermediate partial results 102 that
are stored in the memory 88 or in a cache memory (not
shown) within the DT execution module 90. In either case,
when the DT execution module 90 completes execution of
the partial task 98, it outputs one or more partial results 102.
The partial results 102 may also be stored in memory 88.

If, when the controller 86 is interpreting whether capa-
bilities of the DT execution module(s) 90 can support the
partial task 98, the controller 86 determines that the DT
execution module(s) 90 cannot adequately support the task
98 (e.g., does not have the right resources, does not have
sufficient available resources, available resources would be
too slow, etc.), it then determines whether the partial task 98
should be fully offloaded or partially offloaded.

If the controller 86 determines that the partial task 98
should be fully offloaded, it generates DST control infor-
mation 178 and provides it to the DST client module 34. The
DST control information 178 includes the partial task 98,
memory storage information regarding the slice grouping
96, and distribution instructions. The distribution instruc-
tions instruct the DST client module 34 to divide the partial
task 98 into sub-partial tasks 172, to divide the slice group-
ing 96 into sub-slice groupings 170, and identify other DST
execution units. The DST client module 34 functions in a
similar manner as the DST client module 34 of FIGS. 3-10
to produce the sub-partial tasks 172 and the sub-slice
groupings 170 in accordance with the distribution instruc-
tions.

The DST client module 34 receives DST feedback 168
(e.g., sub-partial results), via the interface 169, from the
DST execution units to which the task was offloaded. The
DST client module 34 provides the sub-partial results to the
DST execution unit, which processes the sub-partial results
to produce the partial result(s) 102.

If the controller 86 determines that the partial task 98
should be partially offloaded, it determines what portion of
the task 98 and/or slice grouping 96 should be processed
locally and what should be offloaded. For the portion that is
being locally processed, the controller 86 generates task
control information 176 as previously discussed. For the
portion that is being offloaded, the controller 86 generates
DST control information 178 as previously discussed.

When the DST client module 34 receives DST feedback
168 (e.g., sub-partial results) from the DST executions units
to which a portion of the task was offloaded, it provides the

US 9,456,035 B2

17
sub-partial results to the DT execution module 90. The DT
execution module 90 processes the sub-partial results with
the sub-partial results it created to produce the partial
result(s) 102.

The memory 88 may be further utilized to retrieve one or
more of stored slices 100, stored results 104, partial results
102 when the DT execution module 90 stores partial results
102 and/or results 104 in the memory 88. For example, when
the partial task 98 includes a retrieval request, the controller
86 outputs the memory control 174 to the memory 88 to
facilitate retrieval of slices 100 and/or results 104.

FIG. 12 is a schematic block diagram of an example of
operation of a distributed storage and task (DST) execution
unit storing encoded data slices and executing a task thereon.
To store the encoded data slices of a partition 1 of slice
grouping 1, a controller 86 generates write commands as
memory control information 174 such that the encoded
slices are stored in desired locations (e.g., permanent or
temporary) within memory 88.

Once the encoded slices are stored, the controller 86
provides task control information 176 to a distributed task
(DT) execution module 90. As a first step of executing the
task in accordance with the task control information 176, the
DT execution module 90 retrieves the encoded slices from
memory 88. The DT execution module 90 then reconstructs
contiguous data blocks of a data partition. As shown for this
example, reconstructed contiguous data blocks of data par-
tition 1 include data blocks 1-15(e.g., d1-d15).

With the contiguous data blocks reconstructed, the DT
execution module 90 performs the task on the reconstructed
contiguous data blocks. For example, the task may be to
search the reconstructed contiguous data blocks for a par-
ticular word or phrase, identify where in the reconstructed
contiguous data blocks the particular word or phrase
occurred, and/or count the occurrences of the particular
word or phrase on the reconstructed contiguous data blocks.
The DST execution unit continues in a similar manner for
the encoded data slices of other partitions in slice grouping
1. Note that with using the unity matrix error encoding
scheme previously discussed, if the encoded data slices of
contiguous data are uncorrupted, the decoding of them is a
relatively straightforward process of extracting the data.

If, however, an encoded data slice of contiguous data is
corrupted (or missing), it can be rebuilt by accessing other
DST execution units that are storing the other encoded data
slices of the set of encoded data slices of the corrupted
encoded data slice. In this instance, the DST execution unit
having the corrupted encoded data slices retrieves at least
three encoded data slices (of contiguous data and of error
coding data) in the set from the other DST execution units
(recall for this example, the pillar width is 5 and the decode
threshold is 3). The DST execution unit decodes the
retrieved data slices using the DS error encoding parameters
to recapture the corresponding data segment. The DST
execution unit then re-encodes the data segment using the
DS error encoding parameters to rebuild the corrupted
encoded data slice. Once the encoded data slice is rebuilt, the
DST execution unit functions as previously described.

FIG. 13 is a schematic block diagram of an embodiment
of an inbound distributed storage and/or task (DST) pro-
cessing section 82 of a DST client module coupled to DST
execution units of a distributed storage and task network
(DSTN) module via a network 24. The inbound DST pro-
cessing section 82 includes a de-grouping module 180, a DS
(dispersed storage) error decoding module 182, a data de-
partitioning module 184, a control module 186, and a
distributed task control module 188. Note that the control

10

15

20

25

30

35

40

45

50

55

60

65

18
module 186 and/or the distributed task control module 188
may be separate modules from corresponding ones of out-
bound DST processing section or may be the same modules.

In an example of operation, the DST execution units have
completed execution of corresponding partial tasks on the
corresponding slice groupings to produce partial results 102.
The inbound DST processing section 82 receives the partial
results 102 via the distributed task control module 188. The
inbound DST processing section 82 then processes the
partial results 102 to produce a final result, or results 104.
For example, if the task was to find a specific word or phrase
within data, the partial results 102 indicate where in each of
the prescribed portions of the data the corresponding DST
execution units found the specific word or phrase. The
distributed task control module 188 combines the individual
partial results 102 for the corresponding portions of the data
into a final result 104 for the data as a whole.

In another example of operation, the inbound DST pro-
cessing section 82 is retrieving stored data from the DST
execution units (i.e., the DSTN module). In this example, the
DST execution units output encoded data slices 100 corre-
sponding to the data retrieval requests. The de-grouping
module 180 receives retrieved slices 100 and de-groups
them to produce encoded data slices per data partition 122.
The DS error decoding module 182 decodes, in accordance
with DS error encoding parameters, the encoded data slices
per data partition 122 to produce data partitions 120.

The data de-partitioning module 184 combines the data
partitions 120 into the data 92. The control module 186
controls the conversion of retrieved slices 100 into the data
92 using control signals 190 to each of the modules. For
instance, the control module 186 provides de-grouping
information to the de-grouping module 180, provides the DS
error encoding parameters to the DS error decoding module
182, and provides de-partitioning information to the data
de-partitioning module 184.

FIG. 14 is a logic diagram of an example of a method that
is executable by distributed storage and task (DST) client
module regarding inbound DST processing. The method
begins at step 194 where the DST client module receives
partial results. The method continues at step 196 where the
DST client module retrieves the task corresponding to the
partial results. For example, the partial results include
header information that identifies the requesting entity,
which correlates to the requested task.

The method continues at step 198 where the DST client
module determines result processing information based on
the task. For example, if the task were to identify a particular
word or phrase within the data, the result processing infor-
mation would indicate to aggregate the partial results for the
corresponding portions of the data to produce the final result.
As another example, if the task were to count the occur-
rences of a particular word or phrase within the data, results
of processing the information would indicate to add the
partial results to produce the final results. The method
continues at step 200 where the DST client module pro-
cesses the partial results in accordance with the result
processing information to produce the final result or results.

FIG. 15 is a diagram of an example of de-grouping
selection processing of an inbound distributed storage and
task (DST) processing section of a DST client module. In
general, this is an inverse process of the grouping module of
the outbound DST processing section of FIG. 9. Accord-
ingly, for each data partition (e.g., partition #1), the de-
grouping module retrieves the corresponding slice grouping
from the DST execution units (EU) (e.g., DST 1-5).

US 9,456,035 B2

19

As shown, DST execution unit #1 provides a first slice
grouping, which includes the first encoded slices of each of
the sets of encoded slices (e.g., encoded data slices of
contiguous data of data blocks 1-15); DST execution unit #2
provides a second slice grouping, which includes the second
encoded slices of each of the sets of encoded slices (e.g.,
encoded data slices of contiguous data of data blocks 16-30);
DST execution unit #3 provides a third slice grouping,
which includes the third encoded slices of each of the sets of
encoded slices (e.g., encoded data slices of contiguous data
of data blocks 31-45); DST execution unit #4 provides a
fourth slice grouping, which includes the fourth encoded
slices of each of the sets of encoded slices (e.g., first encoded
data slices of error coding (EC) data); and DST execution
unit #5 provides a fifth slice grouping, which includes the
fifth encoded slices of each of the sets of encoded slices
(e.g., first encoded data slices of error coding (EC) data).

The de-grouping module de-groups the slice groupings
(e.g., received slices 100) using a de-grouping selector 180
controlled by a control signal 190 as shown in the example
to produce a plurality of sets of encoded data slices (e.g.,
retrieved slices for a partition into sets of slices 122). Each
set corresponding to a data segment of the data partition.

FIG. 16 is a schematic block diagram of an embodiment
of a dispersed storage (DS) error decoding module 182 of an
inbound distributed storage and task (DST) processing sec-
tion. The DS error decoding module 182 includes an inverse
per slice security processing module 202, a de-slicing mod-
ule 204, an error decoding module 206, an inverse segment
security module 208, a de-segmenting processing module
210, and a control module 186.

In an example of operation, the inverse per slice security
processing module 202, when enabled by the control module
186, unsecures each encoded data slice 122 based on slice
de-security information received as control information 190
(e.g., the compliment of the slice security information dis-
cussed with reference to FIG. 6) received from the control
module 186. The slice security information includes data
decompression, decryption, de-watermarking, integrity
check (e.g., CRC verification, etc.), and/or any other type of
digital security. For example, when the inverse per slice
security processing module 202 is enabled, it verifies integ-
rity information (e.g., a CRC value) of each encoded data
slice 122, it decrypts each verified encoded data slice, and
decompresses each decrypted encoded data slice to produce
slice encoded data 158. When the inverse per slice security
processing module 202 is not enabled, it passes the encoded
data slices 122 as the sliced encoded data 158 or is bypassed
such that the retrieved encoded data slices 122 are provided
as the sliced encoded data 158.

The de-slicing module 204 de-slices the sliced encoded
data 158 into encoded data segments 156 in accordance with
a pillar width of the error correction encoding parameters
received as control information 190 from the control module
186. For example, if the pillar width is five, the de-slicing
module 204 de-slices a set of five encoded data slices into an
encoded data segment 156. The error decoding module 206
decodes the encoded data segments 156 in accordance with
error correction decoding parameters received as control
information 190 from the control module 186 to produce
secure data segments 154. The error correction decoding
parameters include identifying an error correction encoding
scheme (e.g., forward error correction algorithm, a Reed-
Solomon based algorithm, an information dispersal algo-
rithm, etc.), a pillar width, a decode threshold, a read
threshold, a write threshold, etc. For example, the error
correction decoding parameters identify a specific error

20

30

40

45

50

55

20

correction encoding scheme, specify a pillar width of five,
and specify a decode threshold of three.

The inverse segment security processing module 208,
when enabled by the control module 186, unsecures the
secured data segments 154 based on segment security infor-
mation received as control information 190 from the control
module 186. The segment security information includes data
decompression, decryption, de-watermarking, integrity
check (e.g., CRC, etc.) verification, and/or any other type of
digital security. For example, when the inverse segment
security processing module 208 is enabled, it verifies integ-
rity information (e.g., a CRC value) of each secure data
segment 154, it decrypts each verified secured data segment,
and decompresses each decrypted secure data segment to
produce a data segment 152. When the inverse segment
security processing module 208 is not enabled, it passes the
decoded data segment 154 as the data segment 152 or is
bypassed.

The de-segment processing module 210 receives the data
segments 152 and receives de-segmenting information as
control information 190 from the control module 186. The
de-segmenting information indicates how the de-segment
processing module 210 is to de-segment the data segments
152 into a data partition 120. For example, the de-segment-
ing information indicates how the rows and columns of data
segments are to be rearranged to yield the data partition 120.

FIG. 17 is a diagram of an example of de-slicing and error
decoding processing of a dispersed error decoding module.
A de-slicing module 204 receives at least a decode threshold
number of encoded data slices 158 for each data segment in
accordance with control information 190 and provides
encoded data 156. In this example, a decode threshold is
three. As such, each set of encoded data slices 158 is shown
to have three encoded data slices per data segment. The
de-slicing module 204 may receive three encoded data slices
per data segment because an associated distributed storage
and task (DST) client module requested retrieving only three
encoded data slices per segment or selected three of the
retrieved encoded data slices per data segment. As shown,
which is based on the unity matrix encoding previously
discussed with reference to FIG. 8, an encoded data slice
may be a data-based encoded data slice (e.g., DS1_d1&d2)
or an error code based encoded data slice (e.g., ES3_1).

An error decoding module 206 decodes the encoded data
156 of each data segment in accordance with the error
correction decoding parameters of control information 190
to produce secured segments 154. In this example, data
segment 1 includes 3 rows with each row being treated as
one word for encoding. As such, data segment 1 includes
three words: word 1 including data blocks d1 and d2, word
2 including data blocks d16 and d17, and word 3 including
blocks d31 and d32. FEach of data segments 2-7 includes
three words where each word includes two data blocks. Data
segment 8 includes three words where each word includes a
single data block (e.g., d15, d30, and d45).

FIG. 18 is a diagram of an example of a de-segment
processing of an inbound distributed storage and task (DST)
processing. In this example, a de-segment processing mod-
ule 210 receives data segments 152 (e.g., 1-8) and rearranges
the data blocks of the data segments into rows and columns
in accordance with de-segmenting information of control
information 190 to produce a data partition 120. Note that
the number of rows is based on the decode threshold (e.g.,3
in this specific example) and the number of columns is based
on the number and size of the data blocks.

The de-segmenting module 210 converts the rows and
columns of data blocks into the data partition 120. Note that

US 9,456,035 B2

21

each data block may be of the same size as other data blocks
or of a different size. In addition, the size of each data block
may be a few bytes to megabytes of data.

FIG. 19 is a diagram of an example of converting slice
groups into data 92 within an inbound distributed storage
and task (DST) processing section. As shown, the data 92 is
reconstructed from a plurality of data partitions (1-x, where
X is an integer greater than 4). Each data partition (or chunk
set of data) is decoded and re-grouped using a de-grouping
and decoding function 212 and a de-partition function 214
from slice groupings as previously discussed. For a given
data partition, the slice groupings (e.g., at least a decode
threshold per data segment of encoded data slices) are
received from DST execution units. From data partition to
data partition, the ordering of the slice groupings received
from the DST execution units may vary as discussed with
reference to FIG. 10.

FIG. 20 is a diagram of an example of a distributed
storage and/or retrieval within the distributed computing
system. The distributed computing system includes a plu-
rality of distributed storage and/or task (DST) processing
client modules 34 (one shown) coupled to a distributed
storage and/or task processing network (DSTN) module, or
multiple DSTN modules, via a network 24. The DST client
module 34 includes an outbound DST processing section 80
and an inbound DST processing section 82. The DSTN
module includes a plurality of DST execution units. Each
DST execution unit includes a controller 86, memory 88,
one or more distributed task (DT) execution modules 90, and
a DST client module 34.

In an example of data storage, the DST client module 34
has data 92 that it desires to store in the DSTN module. The
data 92 may be a file (e.g., video, audio, text, graphics, etc.),
a data object, a data block, an update to a file, an update to
a data block, etc. In this instance, the outbound DST
processing module 80 converts the data 92 into encoded data
slices 216 as will be further described with reference to
FIGS. 21-23. The outbound DST processing module 80
sends, via the network 24, to the DST execution units for
storage as further described with reference to FIG. 24.

In an example of data retrieval, the DST client module 34
issues a retrieve request to the DST execution units for the
desired data 92. The retrieve request may address each DST
executions units storing encoded data slices of the desired
data, address a decode threshold number of DST execution
units, address a read threshold number of DST execution
units, or address some other number of DST execution units.
In response to the request, each addressed DST execution
unit retrieves its encoded data slices 100 of the desired data
and sends them to the inbound DST processing section 82,
via the network 24.

When, for each data segment, the inbound DST process-
ing section 82 receives at least a decode threshold number of
encoded data slices 100, it converts the encoded data slices
100 into a data segment. The inbound DST processing
section 82 aggregates the data segments to produce the
retrieved data 92.

FIG. 21 is a schematic block diagram of an embodiment
of an outbound distributed storage and/or task (DST) pro-
cessing section 80 of a DST client module coupled to a
distributed storage and task network (DSTN) module (e.g.,
a plurality of DST execution units) via a network 24. The
outbound DST processing section 80 includes a data parti-
tioning module 110, a dispersed storage (DS) error encoding
module 112, a grouping selector module 114, a control
module 116, and a distributed task control module 118.

10

15

20

25

30

35

40

45

50

55

60

65

22

In an example of operation, the data partitioning module
110 is by-passed such that data 92 is provided directly to the
DS error encoding module 112. The control module 116
coordinates the by-passing of the data partitioning module
110 by outputting a bypass 220 message to the data parti-
tioning module 110.

The DS error encoding module 112 receives the data 92
in a serial manner, a parallel manner, and/or a combination
thereof. The DS error encoding module 112 DS error
encodes the data in accordance with control information 160
from the control module 116 to produce encoded data slices
218. The DS error encoding includes segmenting the data 92
into data segments, segment security processing (e.g.,
encryption, compression, watermarking, integrity check
(e.g., CRC, etc.)), error encoding, slicing, and/or per slice
security processing (e.g., encryption, compression, water-
marking, integrity check (e.g., CRC, etc.)). The control
information 160 indicates which steps of the DS error
encoding are active for the data 92 and, for active steps,
indicates the parameters for the step. For example, the
control information 160 indicates that the error encoding is
active and includes error encoding parameters (e.g., pillar
width, decode threshold, write threshold, read threshold,
type of error encoding, etc.).

The grouping selector module 114 groups the encoded
slices 218 of the data segments into pillars of slices 216. The
number of pillars corresponds to the pillar width of the DS
error encoding parameters. In this example, the distributed
task control module 118 facilitates the storage request.

FIG. 22 is a schematic block diagram of an example of a
dispersed storage (DS) error encoding module 112 for the
example of FIG. 21. The DS error encoding module 112
includes a segment processing module 142, a segment
security processing module 144, an error encoding module
146, a slicing module 148, and a per slice security process-
ing module 150. Each of these modules is coupled to a
control module 116 to receive control information 160
therefrom.

In an example of operation, the segment processing
module 142 receives data 92 and receives segmenting infor-
mation as control information 160 from the control module
116. The segmenting information indicates how the segment
processing module is to segment the data. For example, the
segmenting information indicates the size of each data
segment. The segment processing module 142 segments the
data 92 into data segments 152 in accordance with the
segmenting information.

The segment security processing module 144, when
enabled by the control module 116, secures the data seg-
ments 152 based on segment security information received
as control information 160 from the control module 116. The
segment security information includes data compression,
encryption, watermarking, integrity check (e.g., CRC, etc.),
and/or any other type of digital security. For example, when
the segment security processing module 144 is enabled, it
compresses a data segment 152, encrypts the compressed
data segment, and generates a CRC value for the encrypted
data segment to produce a secure data segment. When the
segment security processing module 144 is not enabled, it
passes the data segments 152 to the error encoding module
146 or is bypassed such that the data segments 152 are
provided to the error encoding module 146.

The error encoding module 146 encodes the secure data
segments in accordance with error correction encoding
parameters received as control information 160 from the
control module 116. The error correction encoding param-
eters include identifying an error correction encoding

US 9,456,035 B2

23

scheme (e.g., forward error correction algorithm, a Reed-
Solomon based algorithm, an information dispersal algo-
rithm, etc.), a pillar width, a decode threshold, a read
threshold, a write threshold, etc. For example, the error
correction encoding parameters identify a specific error
correction encoding scheme, specifies a pillar width of five,
and specifies a decode threshold of three. From these param-
eters, the error encoding module 146 encodes a data segment
to produce an encoded data segment.

The slicing module 148 slices the encoded data segment
in accordance with a pillar width of the error correction
encoding parameters. For example, if the pillar width is five,
the slicing module slices an encoded data segment into a set
of five encoded data slices. As such, for a plurality of data
segments, the slicing module 148 outputs a plurality of sets
of'encoded data slices as shown within encoding and slicing
function 222 as described.

The per slice security processing module 150, when
enabled by the control module 116, secures each encoded
data slice based on slice security information received as
control information 160 from the control module 116. The
slice security information includes data compression,
encryption, watermarking, integrity check (e.g., CRC, etc.),
and/or any other type of digital security. For example, when
the per slice security processing module 150 is enabled, it
may compress an encoded data slice, encrypt the com-
pressed encoded data slice, and generate a CRC value for the
encrypted encoded data slice to produce a secure encoded
data slice tweaking. When the per slice security processing
module 150 is not enabled, it passes the encoded data slices
or is bypassed such that the encoded data slices 218 are the
output of the DS error encoding module 112.

FIG. 23 is a diagram of an example of converting data 92
into pillar slice groups utilizing encoding, slicing and pillar
grouping function 224 for storage in memory of a distributed
storage and task network (DSTN) module. As previously
discussed the data 92 is encoded and sliced into a plurality
of sets of encoded data slices; one set per data segment. The
grouping selector module organizes the sets of encoded data
slices into pillars of data slices. In this example, the DS error
encoding parameters include a pillar width of 5 and a decode
threshold of 3. As such, for each data segment, 5 encoded
data slices are created.

The grouping selector module takes the first encoded data
slice of each of the sets and forms a first pillar, which may
be sent to the first DST execution unit. Similarly, the
grouping selector module creates the second pillar from the
second slices of the sets; the third pillar from the third slices
of'the sets; the fourth pillar from the fourth slices of the sets;
and the fifth pillar from the fifth slices of the set.

FIG. 24 is a schematic block diagram of an embodiment
of'a distributed storage and/or task (DST) execution unit that
includes an interface 169, a controller 86, memory 88, one
or more distributed task (DT) execution modules 90, and a
DST client module 34. A computing core 26 may be utilized
to implement the one or more DT execution modules 90 and
the DST client module 34. The memory 88 is of sufficient
size to store a significant number of encoded data slices
(e.g., thousands of slices to hundreds-of-millions of slices)
and may include one or more hard drives and/or one or more
solid-state memory devices (e.g., flash memory, DRAM,
etc.).

In an example of storing a pillar of slices 216, the DST
execution unit receives, via interface 169, a pillar of slices
216 (e.g., pillar #1 slices). The memory 88 stores the
encoded data slices 216 of the pillar of slices in accordance
with memory control information 174 it receives from the

10

15

20

25

30

35

40

45

50

55

60

65

24

controller 86. The controller 86 (e.g., a processing module,
a CPU, etc.) generates the memory control information 174
based on distributed storage information (e.g., user infor-
mation (e.g., user ID, distributed storage permissions, data
access permission, etc.), vault information (e.g., virtual
memory assigned to user, user group, etc.), etc.). Similarly,
when retrieving slices, the DST execution unit receives, via
interface 169, a slice retrieval request. The memory 88
retrieves the slice in accordance with memory control infor-
mation 174 it receives from the controller 86. The memory
88 outputs the slice 100, via the interface 169, to a request-
ing entity.

FIG. 25 is a schematic block diagram of an example of
operation of an inbound distributed storage and/or task
(DST) processing section 82 for retrieving dispersed error
encoded data 92. The inbound DST processing section 82
includes a de-grouping module 180, a dispersed storage
(DS) error decoding module 182, a data de-partitioning
module 184, a control module 186, and a distributed task
control module 188. Note that the control module 186 and/or
the distributed task control module 188 may be separate
modules from corresponding ones of an outbound DST
processing section or may be the same modules.

In an example of operation, the inbound DST processing
section 82 is retrieving stored data 92 from the DST execu-
tion units (i.e., the DSTN module). In this example, the DST
execution units output encoded data slices corresponding to
data retrieval requests from the distributed task control
module 188. The de-grouping module 180 receives pillars of
slices 100 and de-groups them in accordance with control
information 190 from the control module 186 to produce
sets of encoded data slices 218. The DS error decoding
module 182 decodes, in accordance with the DS error
encoding parameters received as control information 190
from the control module 186, each set of encoded data slices
218 to produce data segments, which are aggregated into
retrieved data 92. The data de-partitioning module 184 is
by-passed in this operational mode via a bypass signal 226
of control information 190 from the control module 186.

FIG. 26 is a schematic block diagram of an embodiment
of'a dispersed storage (DS) error decoding module 182 of an
inbound distributed storage and task (DST) processing sec-
tion. The DS error decoding module 182 includes an inverse
per slice security processing module 202, a de-slicing mod-
ule 204, an error decoding module 206, an inverse segment
security module 208, and a de-segmenting processing mod-
ule 210. The dispersed error decoding module 182 is oper-
able to de-slice and decode encoded slices per data segment
218 utilizing a de-slicing and decoding function 228 to
produce a plurality of data segments that are de-segmented
utilizing a de-segment function 230 to recover data 92.

In an example of operation, the inverse per slice security
processing module 202, when enabled by the control module
186 via control information 190, unsecures each encoded
data slice 218 based on slice de-security information (e.g.,
the compliment of the slice security information discussed
with reference to FIG. 6) received as control information
190 from the control module 186. The slice de-security
information includes data decompression, decryption, de-
watermarking, integrity check (e.g., CRC verification, etc.),
and/or any other type of digital security. For example, when
the inverse per slice security processing module 202 is
enabled, it verifies integrity information (e.g., a CRC value)
of each encoded data slice 218, it decrypts each verified
encoded data slice, and decompresses each decrypted
encoded data slice to produce slice encoded data. When the
inverse per slice security processing module 202 is not

US 9,456,035 B2

25

enabled, it passes the encoded data slices 218 as the sliced
encoded data or is bypassed such that the retrieved encoded
data slices 218 are provided as the sliced encoded data.

The de-slicing module 204 de-slices the sliced encoded
data into encoded data segments in accordance with a pillar
width of the error correction encoding parameters received
as control information 190 from a control module 186. For
example, if the pillar width is five, the de-slicing module
de-slices a set of five encoded data slices into an encoded
data segment. Alternatively, the encoded data segment may
include just three encoded data slices (e.g., when the decode
threshold is 3).

The error decoding module 206 decodes the encoded data
segments in accordance with error correction decoding
parameters received as control information 190 from the
control module 186 to produce secure data segments. The
error correction decoding parameters include identifying an
error correction encoding scheme (e.g., forward error cor-
rection algorithm, a Reed-Solomon based algorithm, an
information dispersal algorithm, etc.), a pillar width, a
decode threshold, a read threshold, a write threshold, etc.
For example, the error correction decoding parameters iden-
tify a specific error correction encoding scheme, specify a
pillar width of five, and specify a decode threshold of three.

The inverse segment security processing module 208,
when enabled by the control module 186, unsecures the
secured data segments based on segment security informa-
tion received as control information 190 from the control
module 186. The segment security information includes data
decompression, decryption, de-watermarking, integrity
check (e.g., CRC, etc.) verification, and/or any other type of
digital security. For example, when the inverse segment
security processing module is enabled, it verifies integrity
information (e.g., a CRC value) of each secure data segment,
it decrypts each verified secured data segment, and decom-
presses each decrypted secure data segment to produce a
data segment 152. When the inverse segment security pro-
cessing module 208 is not enabled, it passes the decoded
data segment 152 as the data segment or is bypassed. The
de-segmenting processing module 210 aggregates the data
segments 152 into the data 92 in accordance with control
information 190 from the control module 186.

FIG. 27 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module that includes a plurality of distributed storage and
task (DST) execution units (#1 through #n, where, for
example, n is an integer greater than or equal to three). Each
of the DST execution units includes a DST client module 34,
a controller 86, one or more DT (distributed task) execution
modules 90, and memory 88.

In this example, the DSTN module stores, in the memory
of the DST execution units, a plurality of DS (dispersed
storage) encoded data (e.g., 1 through n, where n is an
integer greater than or equal to two) and stores a plurality of
DS encoded task codes (e.g., 1 through k, where k is an
integer greater than or equal to two). The DS encoded data
may be encoded in accordance with one or more examples
described with reference to FIGS. 3-19 (e.g., organized in
slice groupings) or encoded in accordance with one or more
examples described with reference to FIGS. 20-26 (e.g.,
organized in pillar groups). The data that is encoded into the
DS encoded data may be of any size and/or of any content.
For example, the data may be one or more digital books, a
copy of a company’s emails, a large-scale Internet search, a
video security file, one or more entertainment video files

10

15

20

25

30

35

40

45

50

55

60

65

26

(e.g., television programs, movies, etc.), data files, and/or
any other large amount of data (e.g., greater than a few
Terra-Bytes).

The tasks that are encoded into the DS encoded task code
may be a simple function (e.g., a mathematical function, a
logic function, an identify function, a find function, a search
engine function, a replace function, etc.), a complex function
(e.g., compression, human and/or computer language trans-
lation, text-to-voice conversion, voice-to-text conversion,
etc.), multiple simple and/or complex functions, one or more
algorithms, one or more applications, etc. The tasks may be
encoded into the DS encoded task code in accordance with
one or more examples described with reference to FIGS.
3-19 (e.g., organized in slice groupings) or encoded in
accordance with one or more examples described with
reference to FIGS. 20-26 (e.g., organized in pillar groups).

In an example of operation, a DST client module of a user
device or of a DST processing unit issues a DST request to
the DSTN module. The DST request may include a request
to retrieve stored data, or a portion thereof, may include a
request to store data that is included with the DST request,
may include a request to perform one or more tasks on stored
data, may include a request to perform one or more tasks on
data included with the DST request, etc. In the cases where
the DST request includes a request to store data or to retrieve
data, the client module and/or the DSTN module processes
the request as previously discussed with reference to one or
more of FIGS. 3-19 (e.g., slice groupings) and/or 20-26
(e.g., pillar groupings). In the case where the DST request
includes a request to perform one or more tasks on data
included with the DST request, the DST client module
and/or the DSTN module process the DST request as pre-
viously discussed with reference to one or more of FIGS.
3-19.

In the case where the DST request includes a request to
perform one or more tasks on stored data, the DST client
module and/or the DSTN module processes the DST request
as will be described with reference to one or more of FIGS.
28-39. In general, the DST client module identifies data and
one or more tasks for the DSTN module to execute upon the
identified data. The DST request may be for a one-time
execution of the task or for an on-going execution of the
task. As an example of the latter, as a company generates
daily emails, the DST request may be to daily search new
emails for inappropriate content and, if found, record the
content, the email sender(s), the email recipient(s), email
routing information, notify human resources of the identified
email, etc.

FIG. 28 is a schematic block diagram of an example of a
distributed computing system performing tasks on stored
data. In this example, two distributed storage and task (DST)
client modules 1-2 are shown: the first may be associated
with a user device and the second may be associated with a
DST processing unit or a high priority user device (e.g., high
priority clearance user, system administrator, etc.). Each
DST client module includes a list of stored data 234 and a
list of tasks codes 236. The list of stored data 234 includes
one or more entries of data identitying information, where
each entry identifies data stored in the DSTN module 22.
The data identifying information (e.g., data ID) includes one
or more of a data file name, a data file directory listing,
DSTN addressing information of the data, a data object
identifier, etc. The list of tasks 236 includes one or more
entries of task code identifying information, when each
entry identifies task codes stored in the DSTN module 22.
The task code identifying information (e.g., task ID)
includes one or more of a task file name, a task file directory

US 9,456,035 B2

27

listing, DSTN addressing information of the task, another
type of identifier to identify the task, etc.

As shown, the list of data 234 and the list of tasks 236 are
each smaller in number of entries for the first DST client
module than the corresponding lists of the second DST client
module. This may occur because the user device associated
with the first DST client module has fewer privileges in the
distributed computing system than the device associated
with the second DST client module. Alternatively, this may
occur because the user device associated with the first DST
client module serves fewer users than the device associated
with the second DST client module and is restricted by the
distributed computing system accordingly. As yet another
alternative, this may occur through no restraints by the
distributed computing system, it just occurred because the
operator of the user device associated with the first DST
client module has selected fewer data and/or fewer tasks
than the operator of the device associated with the second
DST client module.

In an example of operation, the first DST client module
selects one or more data entries 238 and one or more tasks
240 from its respective lists (e.g., selected data ID and
selected task ID). The first DST client module sends its
selections to a task distribution module 232. The task
distribution module 232 may be within a stand-alone device
of the distributed computing system, may be within the user
device that contains the first DST client module, or may be
within the DSTN module 22.

Regardless of the task distribution module’s location, it
generates DST allocation information 242 from the selected
task ID 240 and the selected data ID 238. The DST alloca-
tion information 242 includes data partitioning information,
task execution information, and/or intermediate result infor-
mation. The task distribution module 232 sends the DST
allocation information 242 to the DSTN module 22. Note
that one or more examples of the DST allocation information
will be discussed with reference to one or more of FIGS.
29-39.

The DSTN module 22 interprets the DST allocation
information 242 to identify the stored DS encoded data (e.g.,
DS error encoded data 2) and to identify the stored DS error
encoded task code (e.g., DS error encoded task code 1). In
addition, the DSTN module 22 interprets the DST allocation
information 242 to determine how the data is to be parti-
tioned and how the task is to be partitioned. The DSTN
module 22 also determines whether the selected DS error
encoded data 238 needs to be converted from pillar grouping
to slice grouping. If so, the DSTN module 22 converts the
selected DS error encoded data into slice groupings and
stores the slice grouping DS error encoded data by over-
writing the pillar grouping DS error encoded data or by
storing it in a different location in the memory of the DSTN
module 22 (i.e., does not overwrite the pillar grouping DS
encoded data).

The DSTN module 22 partitions the data and the task as
indicated in the DST allocation information 242 and sends
the portions to selected DST execution units of the DSTN
module 22. Each of the selected DST execution units
performs its partial task(s) on its slice groupings to produce
partial results. The DSTN module 22 collects the partial
results from the selected DST execution units and provides
them, as result information 244, to the task distribution
module. The result information 244 may be the collected
partial results, one or more final results as produced by the
DSTN module 22 from processing the partial results in
accordance with the DST allocation information 242, or one
or more intermediate results as produced by the DSTN

10

15

20

25

30

35

40

45

50

55

60

65

28

module 22 from processing the partial results in accordance
with the DST allocation information 242.

The task distribution module 232 receives the result
information 244 and provides one or more final results 104
therefrom to the first DST client module. The final result(s)
104 may be result information 244 or a result(s) of the task
distribution module’s processing of the result information
244.

In concurrence with processing the selected task of the
first DST client module, the distributed computing system
may process the selected task(s) of the second DST client
module on the selected data(s) of the second DST client
module. Alternatively, the distributed computing system
may process the second DST client module’s request sub-
sequent to, or preceding, that of the first DST client module.
Regardless of the ordering and/or parallel processing of the
DST client module requests, the second DST client module
provides its selected data 238 and selected task 240 to a task
distribution module 232. If the task distribution module 232
is a separate device of the distributed computing system or
within the DSTN module, the task distribution modules 232
coupled to the first and second DST client modules may be
the same module. The task distribution module 232 pro-
cesses the request of the second DST client module in a
similar manner as it processed the request of the first DST
client module.

FIG. 29 is a schematic block diagram of an embodiment
of a task distribution module 232 facilitating the example of
FIG. 28. The task distribution module 232 includes a plu-
rality of tables it uses to generate distributed storage and task
(DST) allocation information 242 for selected data and
selected tasks received from a DST client module. The tables
include data storage information 248, task storage informa-
tion 250, distributed task (DT) execution module informa-
tion 252, and task < sub-task mapping information 246.

The data storage information table 248 includes a data
identification (ID) field 260, a data size field 262, an
addressing information field 264, distributed storage (DS)
information 266, and may further include other information
regarding the data, how it is stored, and/or how it can be
processed. For example, DS encoded data #1 has a data ID
of'1, a data size of AA (e.g., a byte size of a few terra-bytes
or more), addressing information of Addr_1_AA, and DS
parameters of 3/5; SEG_1; and SLC_1. In this example, the
addressing information may be a virtual address correspond-
ing to the virtual address of the first storage word (e.g., one
or more bytes) of the data and information on how to
calculate the other addresses, may be a range of virtual
addresses for the storage words of the data, physical
addresses of the first storage word or the storage words of
the data, may be a list of slice names of the encoded data
slices of the data, etc. The DS parameters may include
identity of an error encoding scheme, decode threshold/
pillar width (e.g., 3/5 for the first data entry), segment
security information (e.g., SEG_1), per slice security infor-
mation (e.g., SLC_1), and/or any other information regard-
ing how the data was encoded into data slices.

The task storage information table 250 includes a task
identification (ID) field 268, a task size field 270, an address-
ing information field 272, distributed storage (DS) informa-
tion 274, and may further include other information regard-
ing the task, how it is stored, and/or how it can be used to
process data. For example, DS encoded task #2 has a task ID
of 2, a task size of XY, addressing information of
Addr_2_XY, and DS parameters ot 3/5; SEG_2; and SLC_2.
In this example, the addressing information may be a virtual
address corresponding to the virtual address of the first

US 9,456,035 B2

29

storage word (e.g., one or more bytes) of the task and
information on how to calculate the other addresses, may be
a range of virtual addresses for the storage words of the task,
physical addresses of the first storage word or the storage
words of the task, may be a list of slices names of the
encoded slices of the task code, etc. The DS parameters may
include identity of an error encoding scheme, decode thresh-
old/pillar width (e.g., 3/5 for the first data entry), segment
security information (e.g., SEG_2), per slice security infor-
mation (e.g., SLC_2), and/or any other information regard-
ing how the task was encoded into encoded task slices. Note
that the segment and/or the per-slice security information
include a type of encryption (if enabled), a type of com-
pression (if enabled), watermarking information (if
enabled), and/or an integrity check scheme (if enabled).

The task < sub-task mapping information table 246
includes a task field 256 and a sub-task field 258. The task
field 256 identifies a task stored in the memory of a
distributed storage and task network (DSTN) module and
the corresponding sub-task fields 258 indicates whether the
task includes sub-tasks and, if so, how many and if any of
the sub-tasks are ordered. In this example, the task < sub-
task mapping information table 246 includes an entry for
each task stored in memory of the DSTN module (e.g., task
1 through task k). In particular, this example indicates that
task 1 includes 7 sub-tasks; task 2 does not include sub-
tasks, and task k includes r number of sub-tasks (where r is
an integer greater than or equal to two).

The DT execution module table 252 includes a DST
execution unit ID field 276, a DT execution module 1D field
278, and a DT execution module capabilities field 280. The
DST execution unit ID field 276 includes the identity of DST
units in the DSTN module. The DT execution module ID
field 278 includes the identity of each DT execution unit in
each DST unit. For example, DST unit 1 includes three DT
executions modules (e.g., 1_1, 1.2, and 1_3). The DT
execution capabilities field 280 includes identity of the
capabilities of the corresponding DT execution unit. For
example, DT execution module 1_1 includes capabilities X,
where X includes one or more of MIPS capabilities, pro-
cessing resources (e.g., quantity and capability of micropro-
cessors, CPUs, digital signal processors, co-processor,
microcontrollers, arithmetic logic circuitry, and/or any other
analog and/or digital processing circuitry), availability of the
processing resources, memory information (e.g., type, size,
availability, etc.), and/or any information germane to execut-
ing one or more tasks.

From these tables, the task distribution module 232 gen-
erates the DST allocation information 242 to indicate where
the data is stored, how to partition the data, where the task
is stored, how to partition the task, which DT execution units
should perform which partial task on which data partitions,
where and how intermediate results are to be stored, etc. If
multiple tasks are being performed on the same data or
different data, the task distribution module factors such
information into its generation of the DST allocation infor-
mation.

FIG. 30 is a diagram of a specific example of a distributed
computing system performing tasks on stored data as a task
flow 318. In this example, selected data 92 is data 2 and
selected tasks are tasks 1, 2, and 3. Task 1 corresponds to
analyzing translation of data from one language to another
(e.g., human language or computer language); task 2 corre-
sponds to finding specific words and/or phrases in the data;
and task 3 corresponds to finding specific translated words
and/or phrases in translated data.

10

15

20

25

30

35

40

45

50

55

60

65

30

In this example, task 1 includes 7 sub-tasks: task 1_1—
identify non-words (non-ordered); task 1_2—identify
unique words (non-ordered); task 1_3—translate (non-or-
dered); task 1_4—translate back (ordered after task 1_3);
task 1_5—compare to ID errors (ordered after task 1-4); task
1_6—determine non-word translation errors (ordered after
task 1_5 and 1_1); and task 1_7—determine correct trans-
lations (ordered after 1_5 and 1_2). The sub-task further
indicates whether they are an ordered task (i.e., are depen-
dent on the outcome of another task) or non-order (i.e., are
independent of the outcome of another task). Task 2 does not
include sub-tasks and task 3 includes two sub-tasks: task 3_1
translate; and task 3_2 find specific word or phrase in
translated data.

In general, the three tasks collectively are selected to
analyze data for translation accuracies, translation errors,
translation anomalies, occurrence of specific words or
phrases in the data, and occurrence of specific words or
phrases on the translated data. Graphically, the data 92 is
translated 306 into translated data 282; is analyzed for
specific words and/or phrases 300 to produce a list of
specific words and/or phrases 286; is analyzed for non-
words 302 (e.g., not in a reference dictionary) to produce a
list of non-words 290; and is analyzed for unique words 316
included in the data 92 (i.e., how many different words are
included in the data) to produce a list of unique words 298.
Each of these tasks is independent of each other and can
therefore be processed in parallel if desired.

The translated data 282 is analyzed (e.g., sub-task 3_2) for
specific translated words and/or phrases 304 to produce a list
of specific translated words and/or phrases 288. The trans-
lated data 282 is translated back 308 (e.g., sub-task 1_4) into
the language of the original data to produce re-translated
data 284. These two tasks are dependent on the translate task
(e.g., task 1_3) and thus must be ordered after the translation
task, which may be in a pipelined ordering or a serial
ordering. The re-translated data 284 is then compared 310
with the original data 92 to find words and/or phrases that
did not translate (one way and/or the other) properly to
produce a list of incorrectly translated words 294. As such,
the comparing task (e.g., sub-task 1_5) 310 is ordered after
the translation 306 and re-translation tasks 308 (e.g., sub-
tasks 1_3 and 1_4).

The list of words incorrectly translated 294 is compared
312 to the list of non-words 290 to identify words that were
not properly translated because the words are non-words to
produce a list of errors due to non-words 292. In addition,
the list of words incorrectly translated 294 is compared 314
to the list of unique words 298 to identify unique words that
were properly translated to produce a list of correctly
translated words 296. The comparison may also identify
unique words that were not properly translated to produce a
list of unique words that were not properly translated. Note
that each list of words (e.g., specific words and/or phrases,
non-words, unique words, translated words and/or phrases,
etc.,) may include the word and/or phrase, how many times
it is used, where in the data it is used, and/or any other
information requested regarding a word and/or phrase.

FIG. 31 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module storing data and task codes for the example of FIG.
30. As shown, DS encoded data 2 is stored as encoded data
slices across the memory (e.g., stored in memories 88) of
DST execution units 1-5; the DS encoded task code 1 (of
task 1) and DS encoded task 3 are stored as encoded task
slices across the memory of DST execution units 1-5; and
DS encoded task code 2 (of task 2) is stored as encoded task

US 9,456,035 B2

31

slices across the memory of DST execution units 3-7. As
indicated in the data storage information table and the task
storage information table of FIG. 29, the respective data/task
has DS parameters of 3/5 for their decode threshold/pillar
width; hence spanning the memory of five DST execution
units.

FIG. 32 is a diagram of an example of distributed storage
and task (DST) allocation information 242 for the example
of FIG. 30. The DST allocation information 242 includes
data partitioning information 320, task execution informa-
tion 322, and intermediate result information 324. The data
partitioning information 320 includes the data identifier
(ID), the number of partitions to split the data into, address
information for each data partition, and whether the DS
encoded data has to be transformed from pillar grouping to
slice grouping. The task execution information 322 includes
tabular information having a task identification field 326, a
task ordering field 328, a data partition field ID 330, and a
set of DT execution modules 332 to use for the distributed
task processing per data partition. The intermediate result
information 324 includes tabular information having a name
1D field 334, an ID of the DST execution unit assigned to
process the corresponding intermediate result 336, a scratch
pad storage field 338, and an intermediate result storage field
340.

Continuing with the example of FIG. 30, where tasks 1-3
are to be distributedly performed on data 2, the data parti-
tioning information includes the ID of data 2. In addition, the
task distribution module determines whether the DS
encoded data 2 is in the proper format for distributed
computing (e.g., was stored as slice groupings). If not, the
task distribution module indicates that the DS encoded data
2 format needs to be changed from the pillar grouping
format to the slice grouping format, which will be done by
the DSTN module. In addition, the task distribution module
determines the number of partitions to divide the data into
(e.g., 2_1 through 2_z) and addressing information for each
partition.

The task distribution module generates an entry in the task
execution information section for each sub-task to be per-
formed. For example, task 1_1 (e.g., identify non-words on
the data) has no task ordering (i.e., is independent of the
results of other sub-tasks), is to be performed on data
partitions 2_1 through 2_z by DT execution modules 1_1,
2.1,3_1,4_1,and 5_1. For instance, DT execution modules
1.1,2.1,3 1,4 1, and 5_1 search for non-words in data
partitions 2_1 through 2_z to produce task 1_1 intermediate
results (R1-1, which is a list of non-words). Task 1_2 (e.g.,
identify unique words) has similar task execution informa-
tion as task 1_1 to produce task 1_2 intermediate results
(R1-2, which is the list of unique words).

Task 1_3 (e.g., translate) includes task execution infor-
mation as being non-ordered (i.e., is independent), having
DT executionmodules 1_1,2_1,3_1,4_1, and 5_1 translate
data partitions 2_1 through 2_4 and having DT execution
modules 1_2,2 2,3_2,4 2, and 5_2 translate data partitions
2_5 through 2_z to produce task 1_3 intermediate results
(R1-3, which is the translated data). In this example, the data
partitions are grouped, where different sets of DT execution
modules perform a distributed sub-task (or task) on each
data partition group, which allows for further parallel pro-
cessing.

Task 1_4 (e.g., translate back) is ordered after task 1_3
and is to be executed on task 1_3’s intermediate result (e.g.,
R1-3_1) (e.g., the translated data). DT execution modules
1.1,2 1,3.1,4_1, and 5_1 are allocated to translate back
task 1_3 intermediate result partitions R1-3_1 through

10

15

20

25

30

35

40

45

50

55

60

65

32
R1-3_4 and DT execution modules 1_2,2 2, 6_1,7_1, and
7_2 are allocated to translate back task 1_3 intermediate
result partitions R1-3_5 through R1-3_z to produce task 1-4
intermediate results (R1-4, which is the translated back
data).

Task 1_5 (e.g., compare data and translated data to
identify translation errors) is ordered after task 1_4 and is to
be executed on task 1_4’s intermediate results (R4-1) and on
the data. DT execution modules1_1,2 1,3 1,4 1,and5_1
are allocated to compare the data partitions (2_1 through
2_z) with partitions of task 1-4 intermediate results parti-
tions R1-4_1 through R1-4 _z to produce task 1_5 interme-
diate results (R1-5, which is the list words translated incor-
rectly).

Task 1_6 (e.g., determine non-word translation errors) is
ordered after tasks 1_1 and 1_5 and is to be executed on
tasks 1_1’s and 1_5’s intermediate results (R1-1 and R1-5).
DT execution modules 1_1, 2.1, 3.1, 4 1, and 5_1 are
allocated to compare the partitions of task 1_1 intermediate
results (R1-1_1 through R1-1_z) with partitions of task 1-5
intermediate results partitions (R1-5_1 through R1-5_z) to
produce task 1_6 intermediate results (R1-6, which is the list
translation errors due to non-words).

Task 1_7 (e.g., determine words correctly translated) is
ordered after tasks 1_2 and 1_5 and is to be executed on
tasks 1_2’s and 1_5s intermediate results (R1-1 and R1-5).
DT execution modules 1_2, 2 2, 3 2, 4 2, and 5_2 are
allocated to compare the partitions of task 1_2 intermediate
results (R1-2_1 through R1-2_z) with partitions of task 1-5
intermediate results partitions (R1-5_1 through R1-5_z) to
produce task 1_7 intermediate results (R1-7, which is the list
of correctly translated words).

Task 2 (e.g., find specific words and/or phrases) has no
task ordering (i.e., is independent of the results of other
sub-tasks), is to be performed on data partitions 2_1 through
2_z by DT execution modules 3_1,4_1,5_1,6_1, and 7_1.
For instance, DT execution modules 3_1,4_1,5_1,6_1, and
7_1 search for specific words and/or phrases in data parti-
tions 2_1 through 2_z to produce task 2 intermediate results
(R2, which is a list of specific words and/or phrases).

Task 3_2 (e.g., find specific translated words and/or
phrases) is ordered after task 1_3 (e.g., translate) is to be
performed on partitions R1-3_1 through R1-3_z by DT
execution modules 1_2, 2.2, 3 2, 4 2, and 5_2. For
instance, DT execution modules 1_2,2_2,3 2,4 2, and5_2
search for specific translated words and/or phrases in the
partitions of the translated data (R1-3_1 through R1-3_z) to
produce task 3_2 intermediate results (R3-2, which is a list
of specific translated words and/or phrases).

For each task, the intermediate result information indi-
cates which DST unit is responsible for overseeing execu-
tion of the task and, if needed, processing the partial results
generated by the set of allocated DT execution units. In
addition, the intermediate result information indicates a
scratch pad memory for the task and where the correspond-
ing intermediate results are to be stored. For example, for
intermediate result R1-1 (the intermediate result of task
1_1), DST unit 1 is responsible for overseeing execution of
the task 1_1 and coordinates storage of the intermediate
result as encoded intermediate result slices stored in memory
of DST execution units 1-5. In general, the scratch pad is for
storing non-DS encoded intermediate results and the inter-
mediate result storage is for storing DS encoded intermedi-
ate results.

FIGS. 33-38 are schematic block diagrams of the distrib-
uted storage and task network (DSTN) module performing
the example of FIG. 30. In FIG. 33, the DSTN module

US 9,456,035 B2

33

accesses the data 92 and partitions it into a plurality of
partitions 1-z in accordance with distributed storage and task
network (DST) allocation information. For each data parti-
tion, the DSTN identifies a set of its DT (distributed task)
execution modules 90 to perform the task (e.g., identify
non-words (i.e., not in a reference dictionary) within the data
partition) in accordance with the DST allocation informa-
tion. From data partition to data partition, the set of DT
execution modules 90 may be the same, different, or a
combination thereof (e.g., some data partitions use the same
set while other data partitions use different sets).

For the first data partition, the first set of DT execution
modules (e.g., 1.1, 2_1, 3_1, 4_1, and 5_1 per the DST
allocation information of FIG. 32) executes task 1_1 to
produce a first partial result 102 of non-words found in the
first data partition. The second set of DT execution modules
(e.g,1.1,2.1,3_1, 4 1, and 5_1 per the DST allocation
information of FIG. 32) executes task 1_1 to produce a
second partial result 102 of non-words found in the second
data partition. The sets of DT execution modules (as per the
DST allocation information) perform task 1_1 on the data
partitions until the “z” set of DT execution modules per-
forms task 1_1 on the “zth” data partition to produce a “zth”
partial result 102 of non-words found in the “zth” data
partition.

As indicated in the DST allocation information of FIG.
32, DST execution unit 1 is assigned to process the first
through “zth” partial results to produce the first intermediate
result (R1-1), which is a list of non-words found in the data.
For instance, each set of DT execution modules 90 stores its
respective partial result in the scratchpad memory of DST
execution unit 1 (which is identified in the DST allocation or
may be determined by DST execution unit 1). A processing
module of DST execution 1 is engaged to aggregate the first
through “zth” partial results to produce the first intermediate
result (e.g., R1_1). The processing module stores the first
intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 1.

DST execution unit 1 engages its DST client module to
slice grouping based DS error encode the first intermediate
result (e.g., the list of non-words). To begin the encoding, the
DST client module determines whether the list of non-words
is of a sufficient size to partition (e.g., greater than a
Terra-Byte). If yes, it partitions the first intermediate result
(R1-1) into a plurality of partitions (e.g., R1-1_1 through
R1-1_m). If the first intermediate result is not of sufficient
size to partition, it is not partitioned.

For each partition of the first intermediate result, or for the
first intermediate result, the DST client module uses the DS
error encoding parameters of the data (e.g., DS parameters
of data 2, which includes 3/5 decode threshold/pillar width
ratio) to produce slice groupings. The slice groupings are
stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-5).

In FIG. 34, the DSTN module is performing task 1_2
(e.g., find unique words) on the data 92. To begin, the DSTN
module accesses the data 92 and partitions it into a plurality
of partitions 1-z in accordance with the DST allocation
information or it may use the data partitions of task 1_1 if
the partitioning is the same. For each data partition, the
DSTN identifies a set of its DT execution modules to
perform task 1_2 in accordance with the DST allocation
information. From data partition to data partition, the set of
DT execution modules may be the same, different, or a
combination thereof. For the data partitions, the allocated set

10

15

20

25

30

35

40

45

50

55

60

34

of DT execution modules executes task 1_2 to produce a
partial results (e.g., 1** through “zth) of unique words found
in the data partitions.

As indicated in the DST allocation information of FIG.
32, DST execution unit 1 is assigned to process the first
through “zth” partial results 102 of task 1_2 to produce the
second intermediate result (R1-2), which is a list of unique
words found in the data 92. The processing module of DST
execution 1 is engaged to aggregate the first through “zth”
partial results of unique words to produce the second inter-
mediate result. The processing module stores the second
intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 1.

DST execution unit 1 engages its DST client module to
slice grouping based DS error encode the second interme-
diate result (e.g., the list of non-words). To begin the
encoding, the DST client module determines whether the list
of unique words is of a sufficient size to partition (e.g.,
greater than a Terra-Byte). If yes, it partitions the second
intermediate result (R1-2) into a plurality of partitions (e.g.,
R1-2_1 through R1-2_m). If the second intermediate result
is not of sufficient size to partition, it is not partitioned.

For each partition of the second intermediate result, or for
the second intermediate results, the DST client module uses
the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
1-5).

In FIG. 35, the DSTN module is performing task 1_3
(e.g., translate) on the data 92. To begin, the DSTN module
accesses the data 92 and partitions it into a plurality of
partitions 1-z in accordance with the DST allocation infor-
mation or it may use the data partitions of task 1_1 if the
partitioning is the same. For each data partition, the DSTN
identifies a set of its DT execution modules to perform task
1_3 in accordance with the DST allocation information (e.g.,
DT executionmodules1_1,2_1,3_1,4_1, and 5_1 translate
data partitions 2_1 through 2_4 and DT execution modules
12,22, 32 4.2, and 5_2 translate data partitions 2_5
through 2_z). For the data partitions, the allocated set of DT
execution modules 90 executes task 1_3 to produce partial
results 102 (e.g., 1° through “zth™) of translated data.

As indicated in the DST allocation information of FIG.
32, DST execution unit 2 is assigned to process the first
through “zth” partial results of task 1_3 to produce the third
intermediate result (R1-3), which is translated data. The
processing module of DST execution 2 is engaged to aggre-
gate the first through “zth” partial results of translated data
to produce the third intermediate result. The processing
module stores the third intermediate result as non-DS error
encoded data in the scratchpad memory or in another section
of memory of DST execution unit 2.

DST execution unit 2 engages its DST client module to
slice grouping based DS error encode the third intermediate
result (e.g., translated data). To begin the encoding, the DST
client module partitions the third intermediate result (R1-3)
into a plurality of partitions (e.g., R1-3_1 through R1-3_y).
For each partition of the third intermediate result, the DST
client module uses the DS error encoding parameters of the
data (e.g., DS parameters of data 2, which includes 3/5
decode threshold/pillar width ratio) to produce slice group-
ings. The slice groupings are stored in the intermediate result
memory (e.g., allocated memory in the memories of DST
execution units 2-6 per the DST allocation information).

US 9,456,035 B2

35

As is further shown in FIG. 35, the DSTN module is
performing task 1_4 (e.g., retranslate) on the translated data
of the third intermediate result. To begin, the DSTN module
accesses the translated data (from the scratchpad memory or
from the intermediate result memory and decodes it) and
partitions it into a plurality of partitions in accordance with
the DST allocation information. For each partition of the
third intermediate result, the DSTN identifies a set of its DT
execution modules 90 to perform task 1_4 in accordance
with the DST allocation information (e.g., DT execution
modules 1.1, 2.1, 3_1, 4.1, and 5_1 are allocated to
translate back partitions R1-3_1 through R1-3_4 and DT
execution modules 1_2,2_2,6_1,7_1, and 7_2 are allocated
to translate back partitions R1-3_5 through R1-3_z). For the
partitions, the allocated set of DT execution modules
executes task 1_4 to produce partial results 102 (e.g., 1st
through “zth”) of re-translated data.

As indicated in the DST allocation information of FIG.
32, DST execution unit 3 is assigned to process the first
through “zth” partial results of task 1_4 to produce the fourth
intermediate result (R1-4), which is retranslated data. The
processing module of DST execution 3 is engaged to aggre-
gate the first through “zth” partial results of retranslated data
to produce the fourth intermediate result. The processing
module stores the fourth intermediate result as non-DS error
encoded data in the scratchpad memory or in another section
of memory of DST execution unit 3.

DST execution unit 3 engages its DST client module to
slice grouping based DS error encode the fourth intermedi-
ate result (e.g., retranslated data). To begin the encoding, the
DST client module partitions the fourth intermediate result
(R1-4) into a plurality of partitions (e.g., R1-4_1 through
R1-4_z). For each partition of the fourth intermediate result,
the DST client module uses the DS error encoding param-
eters of the data (e.g., DS parameters of data 2, which
includes 3/5 decode threshold/pillar width ratio) to produce
slice groupings. The slice groupings are stored in the inter-
mediate result memory (e.g., allocated memory in the
memories of DST execution units 3-7 per the DST allocation
information).

In FIG. 36, a distributed storage and task network (DSTN)
module is performing task 1_5 (e.g., compare) on data 92
and retranslated data of FIG. 35. To begin, the DSTN
module accesses the data 92 and partitions it into a plurality
of partitions in accordance with the DST allocation infor-
mation or it may use the data partitions of task 1_1 if the
partitioning is the same. The DSTN module also accesses
the retranslated data from the scratchpad memory, or from
the intermediate result memory and decodes it, and parti-
tions it into a plurality of partitions in accordance with the
DST allocation information. The number of partitions of the
retranslated data corresponds to the number of partitions of
the data.

For each pair of partitions (e.g., data partition 1 and
retranslated data partition 1), the DSTN identifies a set of its
DT execution modules 90 to perform task 1_5 in accordance
with the DST allocation information (e.g., DT execution
modules 1_1, 2_1, 3_1, 4_1, and 5_1). For each pair of
partitions, the allocated set of DT execution modules
executes task 1_5 to produce partial results 102 (e.g., 1%
through “zth”) of a list of incorrectly translated words and/or
phrases.

As indicated in the DST allocation information of FIG.
32, DST execution unit 1 is assigned to process the first
through “zth” partial results of task 1_5 to produce the fifth
intermediate result (R1-5), which is the list of incorrectly
translated words and/or phrases. In particular, the processing

25

35

40

45

50

36

module of DST execution 1 is engaged to aggregate the first
through “zth” partial results of the list of incorrectly trans-
lated words and/or phrases to produce the fifth intermediate
result. The processing module stores the fifth intermediate
result as non-DS error encoded data in the scratchpad
memory or in another section of memory of DST execution
unit 1.

DST execution unit 1 engages its DST client module to
slice grouping based DS error encode the fifth intermediate
result. To begin the encoding, the DST client module par-
titions the fifth intermediate result (R1-5) into a plurality of
partitions (e.g., R1-5_1 through R1-5_z). For each partition
of the fifth intermediate result, the DST client module uses
the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
1-5 per the DST allocation information).

As is further shown in FIG. 36, the DSTN module is
performing task 1_6 (e.g., translation errors due to non-
words) on the list of incorrectly translated words and/or
phrases (e.g., the fifth intermediate result R1-5) and the list
of non-words (e.g., the first intermediate result R1-1). To
begin, the DSTN module accesses the lists and partitions
them into a corresponding number of partitions.

For each pair of partitions (e.g., partition R1-1_1 and
partition R1-5_1), the DSTN identifies a set of its DT
execution modules 90 to perform task 1_6 in accordance
with the DST allocation information (e.g., DT execution
modules 1_1, 2_1, 3_1, 4_1, and 5_1). For each pair of
partitions, the allocated set of DT execution modules
executes task 1_6 to produce partial results 102 (e.g., 1%
through “zth”) of a list of incorrectly translated words and/or
phrases due to non-words.

As indicated in the DST allocation information of FIG.
32, DST execution unit 2 is assigned to process the first
through “zth” partial results of task 1_6 to produce the sixth
intermediate result (R1-6), which is the list of incorrectly
translated words and/or phrases due to non-words. In par-
ticular, the processing module of DST execution 2 is
engaged to aggregate the first through “zth” partial results of
the list of incorrectly translated words and/or phrases due to
non-words to produce the sixth intermediate result. The
processing module stores the sixth intermediate result as
non-DS error encoded data in the scratchpad memory or in
another section of memory of DST execution unit 2.

DST execution unit 2 engages its DST client module to
slice grouping based DS error encode the sixth intermediate
result. To begin the encoding, the DST client module par-
titions the sixth intermediate result (R1-6) into a plurality of
partitions (e.g., R1-6_1 through R1-6_z). For each partition
of the sixth intermediate result, the DST client module uses
the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
2-6 per the DST allocation information).

As is still further shown in FIG. 36, the DSTN module is
performing task 1_7 (e.g., correctly translated words and/or
phrases) on the list of incorrectly translated words and/or
phrases (e.g., the fifth intermediate result R1-5) and the list
of unique words (e.g., the second intermediate result R1-2).
To begin, the DSTN module accesses the lists and partitions
them into a corresponding number of partitions.

US 9,456,035 B2

37

For each pair of partitions (e.g., partition R1-2_1 and
partition R1-5_1), the DSTN identifies a set of its DT
execution modules 90 to perform task 1_7 in accordance
with the DST allocation information (e.g., DT execution
modules 1_2, 2 2, 3_2, 4_2, and 5_2). For each pair of
partitions, the allocated set of DT execution modules
executes task 1_7 to produce partial results 102 (e.g., 1%
through “zth) of a list of correctly translated words and/or
phrases.

As indicated in the DST allocation information of FIG.
32, DST execution unit 3 is assigned to process the first
through “zth™ partial results of task 1_7 to produce the
seventh intermediate result (R1-7), which is the list of
correctly translated words and/or phrases. In particular, the
processing module of DST execution 3 is engaged to aggre-
gate the first through “zth” partial results of the list of
correctly translated words and/or phrases to produce the
seventh intermediate result. The processing module stores
the seventh intermediate result as non-DS error encoded data
in the scratchpad memory or in another section of memory
of DST execution unit 3.

DST execution unit 3 engages its DST client module to
slice grouping based DS error encode the seventh interme-
diate result. To begin the encoding, the DST client module
partitions the seventh intermediate result (R1-7) into a
plurality of partitions (e.g., R1-7_1 through R1-7_z). For
each partition of the seventh intermediate result, the DST
client module uses the DS error encoding parameters of the
data (e.g., DS parameters of data 2, which includes 3/5
decode threshold/pillar width ratio) to produce slice group-
ings. The slice groupings are stored in the intermediate result
memory (e.g., allocated memory in the memories of DST
execution units 3-7 per the DST allocation information).

In FIG. 37, the distributed storage and task network
(DSTN) module is performing task 2 (e.g., find specific
words and/or phrases) on the data 92. To begin, the DSTN
module accesses the data and partitions it into a plurality of
partitions 1-z in accordance with the DST allocation infor-
mation or it may use the data partitions of task 1_1 if the
partitioning is the same. For each data partition, the DSTN
identifies a set of its DT execution modules 90 to perform
task 2 in accordance with the DST allocation information.
From data partition to data partition, the set of DT execution
modules may be the same, different, or a combination
thereof. For the data partitions, the allocated set of DT
execution modules executes task 2 to produce partial results
102 (e.g., 1* through “zth™) of specific words and/or phrases
found in the data partitions.

As indicated in the DST allocation information of FIG.
32, DST execution unit 7 is assigned to process the first
through “zth” partial results of task 2 to produce task 2
intermediate result (R2), which is a list of specific words
and/or phrases found in the data. The processing module of
DST execution 7 is engaged to aggregate the first through
“zth” partial results of specific words and/or phrases to
produce the task 2 intermediate result. The processing
module stores the task 2 intermediate result as non-DS error
encoded data in the scratchpad memory or in another section
of memory of DST execution unit 7.

DST execution unit 7 engages its DST client module to
slice grouping based DS error encode the task 2 intermediate
result. To begin the encoding, the DST client module deter-
mines whether the list of specific words and/or phrases is of
a sufficient size to partition (e.g., greater than a Terra-Byte).
If yes, it partitions the task 2 intermediate result (R2) into a

10

20

40

45

50

38

plurality of partitions (e.g., R2_1 through R2_m). If the task
2 intermediate result is not of sufficient size to partition, it is
not partitioned.

For each partition of the task 2 intermediate result, or for
the task 2 intermediate results, the DST client module uses
the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
1-4, and 7).

In FIG. 38, the distributed storage and task network
(DSTN) module is performing task 3 (e.g., find specific
translated words and/or phrases) on the translated data
(R1-3). To begin, the DSTN module accesses the translated
data (from the scratchpad memory or from the intermediate
result memory and decodes it) and partitions it into a
plurality of partitions in accordance with the DST allocation
information. For each partition, the DSTN identifies a set of
its DT execution modules to perform task 3 in accordance
with the DST allocation information. From partition to
partition, the set of DT execution modules may be the same,
different, or a combination thereof. For the partitions, the
allocated set of DT execution modules 90 executes task 3 to
produce partial results 102 (e.g., 1° through “zth”) of spe-
cific translated words and/or phrases found in the data
partitions.

As indicated in the DST allocation information of FIG.
32, DST execution unit 5 is assigned to process the first
through “zth” partial results of task 3 to produce task 3
intermediate result (R3), which is a list of specific translated
words and/or phrases found in the translated data. In par-
ticular, the processing module of DST execution 5 is
engaged to aggregate the first through “zth” partial results of
specific translated words and/or phrases to produce the task
3 intermediate result. The processing module stores the task
3 intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 7.

DST execution unit 5 engages its DST client module to
slice grouping based DS error encode the task 3 intermediate
result. To begin the encoding, the DST client module deter-
mines whether the list of specific translated words and/or
phrases is of a sufficient size to partition (e.g., greater than
a Terra-Byte). If yes, it partitions the task 3 intermediate
result (R3) into a plurality of partitions (e.g., R3_1 through
R3_m). If the task 3 intermediate result is not of sufficient
size to partition, it is not partitioned.

For each partition of the task 3 intermediate result, or for
the task 3 intermediate results, the DST client module uses
the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
1-4, 5, and 7).

FIG. 39 is a diagram of an example of combining result
information into final results 104 for the example of FIG. 30.
In this example, the result information includes the list of
specific words and/or phrases found in the data (task 2
intermediate result), the list of specific translated words
and/or phrases found in the data (task 3 intermediate result),
the list of non-words found in the data (task 1 first interme-
diate result R1-1), the list of unique words found in the data
(task 1 second intermediate result R1-2), the list of transla-
tion errors due to non-words (task 1 sixth intermediate result
R1-6), and the list of correctly translated words and/or

US 9,456,035 B2

39

phrases (task 1 seventh intermediate result R1-7). The task
distribution module provides the result information to the
requesting DST client module as the results 104.

FIG. 40A is a schematic block diagram of an embodiment
of a dispersed storage network (DSN) system that includes
a dispersed storage (DS) processing module 350 and a DS
unit set 352. The DS processing module 350 includes a
memory for storage of a storage map 356. The DS process-
ing module 350 may be implemented utilizing at least one of
a DS processing unit, the distributed storage and task (DST)
processing unit 16 of FIG. 1, a DST processing module, a
server, a computer, a computing device, a processing mod-
ule, a user device, a DS unit, a storage device, a storage
server, and the DST execution unit 36 of FIG. 1. The DS unit
set 352 includes a set of DS units 354. Each DS unit 354 may
be implemented utilizing at least one of a storage server, a
memory device, a memory module, a storage device, the
DST execution unit 36 of FIG. 1, a user device, the DST
processing unit 16 of FIG. 1, and a DS processing unit.

The DS unit set 352 stores one or more sets of encoded
data slices, where data is encoded using a dispersed storage
error coding function to produce the one or more sets of
encoded data slices. Each encoded data slice of the one or
more sets of encoded data slices is associated with a slice
name. Each DS unit 354 of the DS unit set is affiliated with
one or more DSN address ranges such that the encoded data
slices that correspond to the slice names within the one or
more DSN address ranges are stored in the DS unit 354. For
example, encoded data slices with slice names falling in
DSN address range A are stored in a first DS unit 354 of the
DS unit set, where the first DS unit 354 is affiliated with the
DSN address range A. As another example, as illustrated, a
second DS unit 354 is affiliated with address ranges B-D, a
third DS unit 354 is affiliated with address range E, a fourth
DS unit 354 is affiliated with address ranges F-H, etc.
through a second to last DS unit 354 affiliated with address
range N1 and a last DS unit 354 affiliated with address
ranges N2-N4.

The storage map 356 includes a mapping of the one or
more DSN address ranges for each DS unit 354. The DS
processing module 350 utilizes the storage map 356 when
accessing one or more encoded data slices stored in the DS
unit set 352. For example, when accessing an encoded data
slice associated with a slice name within DSN address range
A, the DS processing module 350 sends an access request to
the first DS unit 354 when the storage map indicates that the
first DS unit 354 is associated with the DSN address range
A. The storage map 356 may be initially generated using a
deterministic function such that DSN address ranges are
evenly distributed amongst the set of DS units such that each
DS unit 354 of the set of DS units is affiliated with a
common number of DSN addresses of a corresponding DSN
address range.

From time to time, DS unit to DSN address range affili-
ations may be updated. At least one of the DS processing
module 350 and at least one DS unit 354 of the set of DS
units may determine to update the DS unit to DSN address
range affiliation. The determining may be based on one or
more of detecting a storage imbalance between two DS units
of the set of DS units, receiving an error message, detecting
DS unit unavailability, a predetermination, interpreting a
schedule, and receiving a request. For example, the first DS
unit 354 determines to migrate address range B from the first
DS unit 354 to the second DS unit 354 when encoded data
slices stored in the first DS unit are utilizing a greater
amount of storage capacity as compared to encoded data
slices stored in the second DS unit. When migrating the

10

15

20

25

30

35

40

45

50

55

60

65

40

address range B from the first DS unit 354 to the second DS
unit 354, each of the first DS unit and the second DS unit
update a corresponding local storage map to indicate that
DSN address range B is affiliated with the second DS unit
and is to be de-affiliated from the first DS unit. Alternatively,
or in addition to, at least one of the first DS unit 354 and the
second DS unit 354 updates the DS processing module 350
to affect updating of the storage map 356 stored within the
DS processing module.

In an example of operation, the DS processing module
350 issues a DSN address range B access request 358 that
includes a slice name (e.g., a read or write request for an
encoded data slice associated with the slice name that falls
within the DSN address range B) to the first DS unit 354 in
accordance with the storage map of the DS processing
module 350 (e.g., when the slice name falls within DSN
address range B and the storage map indicates that the DSN
address range B is affiliated with the first DS unit). The first
DS unit 354 detects an addressing error by determining that
the slice name of the DSN address range B access request is
not affiliated with the first DS unit (e.g., since the slice name
is affiliated with the second DS unit in accordance with the
local storage map of the first DS unit). When detecting such
an addressing error, the first DS unit 354 issues a DSN
address range B error response 360 to the DS processing
module 350, where the DSN address range B error response
360 includes an indicator that the encoded data slice of the
slice name of the DSN address range B request is not
associated with the first DS unit. When receiving the DSN
address range B error response 360, the DS processing
module 350 identifies a DSN address range associated with
the slice name to produce an identified DSN address range.
The determining includes one or more of accessing the
storage map 356, initiating a query, receiving a response,
and interpreting an error message. For example, the DS
processing module 350 accesses the storage map 356 to
identify DSN address range B as associated with the slice
name.

Next, the DS processing module 350 issues a range owner
request 362 to the first DS unit in accordance with the
storage map 356, where the range owner request includes the
identified DSN address range B. The first DS unit 354
accesses the local storage map of the first DS unit to identify
one or more DS units associated with the identify DSN
address range B. For instance, the first DS unit 354 identifies
the second DS unit 354 as associated with the DSN address
range B. The first DS unit 354 issues a range owner response
364 to the DS processing module 350, where the range
owner response 364 includes identity of the second DS unit
as associated with the DSN address range B. The DS
processing module 350 receives the range owner response
364 and updates the storage map 356 of the DS processing
module 350 to indicate that the DSN address range B is
affiliated with the second DS unit 354 and is de-affiliated
with the first DS unit 354.

Next, the DS processing module 350 issues another DSN
address range B access request 366 that includes the slice
name to the second DS unit in accordance with the storage
map 356 of the DS processing module 350 (e.g., when the
slice name falls within DSN address range B and the storage
map indicates that the DSN address range B is affiliated with
the second DS unit). The second DS unit 354 receives the
DSN address range B access request 366, and upon verifying
that the slice name is associated with the second DS unit
based on the storage map of the second DS unit, issues a
DSN address range B access response 368 to the DS
processing module 350 based on the DSN address range B

US 9,456,035 B2

41

access request. For example, the DSN address range B
access response 368 includes the encoded data slice when
the DSN address range B access request 366 includes a read
request. As another example, the DSN address range B
access response 368 includes a status indicator when the
DSN address range B access request 366 includes a write
request. The status indicator may include one of a write error
indicator and a write success indicator.

FIG. 40B is a flowchart illustrating an example of updat-
ing dispersed storage network (DSN) addressing. The
method begins at step 370 where a processing module (e.g.,
of a distributed storage and task (DST) client module, of a
dispersed storage (DS) processing module) generates a DS
unit access request based on a DSN address. The generating
includes determining the DSN address based on one or more
of a directory lookup, a dispersed hierarchical index lookup,
and generating (e.g., when writing new data). The generat-
ing further includes generating a slice name based on the
DSN address for inclusion in the DSN access request. The
method continues at step 372 where the processing module
identifies a target DS unit based on the DSN address. The
identifying includes one or more of a storage map lookup,
identifying a DSN address range associated with the DSN
address based on the storage map lookup, identifying the
DSN address range associated with the slice name based on
the storage map lookup, and identifying the target DS unit
based on the storage map lookup using at least one of the
DSN address range, the DSN address, and a slice name.

The method continues at step 374 where the processing
module outputs the DS unit access request to the target DS
unit. The method continues at step 376 where the processing
module identifies a DSN address range associated with the
target DS unit in accordance with the storage map when
receiving an access response addressing error. The identi-
fying includes receiving the access response addressing
error and identifying a DSN address range associated with
the DS unit based on the storage map lookup.

The method continues at step 378 where the processing
module issues a range owner request to the target DS unit
that includes the identified DSN address range associated
with the target DS unit. The issuing includes generating the
range owner request and outputting the range owner request
to the target DS unit. The method continues at step 380
where the processing module updates the storage map based
on received range owner response. The range owner
response may include one or more DS unit identifiers and a
corresponding one or more DSN address ranges. The updat-
ing includes, for each DS unit identifier of the one or more
DS unit identifiers of the range owner response, updating the
storage map for each of the one or more DS unit identifiers
to include a corresponding one or more address ranges of the
range owner response, where the address ranges fall within
the DSN address range associated with the DS unit. As such,
the processing module may ignore DSN address mappings
outside of the identified DSN address range.

FIG. 41 is a flowchart illustrating another example of
updating dispersed storage network addressing, which
includes similar steps to FIG. 40B. The method begins at
step 382 where a first dispersed storage (DS) unit of a set of
DS units migrates a dispersed storage network (DSN)
address sub-range from the first DS unit to a second DS unit
of the set of DS units. The migrating includes one or more
of selecting slices to migrate, identifying DSN address
sub-range associated with the selected slices based on a local
storage map of the first DS unit, facilitating migration of the
slices, and updating the local storage map associated with
the first DS unit to affiliate the DSN address sub-range with

25

30

40

45

55

42

the second DS unit and to de-affiliate the DSN address
sub-range with the first DS unit.

The method continues at step 384 where the second DS
unit migrates the DSN address sub-range from the second
DS unit to a third DS unit. The migrating includes one or
more of selecting slices to migrate, identifying the DSN
address sub-range associated with the selected slices based
on a local storage map of the second DS unit, facilitating
migration of the slices, and updating the local storage map
associated with the second DS unit to affiliate the DSN
address sub-range with the third DS unit and to de-affiliate
the DSN address sub-range with the second DS unit.

The method continues at step 386 where the third DS unit
issues a range owner message with regards to the DSN
address sub-range to a home DS unit. The home DS unit
includes a DS unit affiliated with the DSN address sub-range
with regards to a storage map of a DS processing module.
For example, the home DS unit includes the first DS unit.
The issuing includes generating and outputting the range
owner message to one or more of the second DS unit, the
first DS unit, and one or more DS processing modules
including the DS processing module. The method continues
with steps 370-372 of FIG. 40B where a processing module
(e.g., of a distributed storage and task (DST) client module,
of a dispersed storage (DS) processing module) generates a
DS unit access request based on a DSN address and iden-
tifies a target DS unit based on the DSN address.

The method continues at step 388 where the processing
module determines whether the target DS unit has already
been identified. The determining may be based on a tracking
record that tracks previous authentication of potential target
DS units. The method continues to step 390 when the target
DS unit has not already been identified. The method
branches to step 392 when the target DS unit has already
been identified. The method continues at step 390 where the
processing module indicates an error when the target DS unit
has not already been identified. The indicating of the error
includes at least one of issuing a namespace error message
to one or more of a requesting entity, the DS processing
module, and a DS managing unit.

When the target DS unit has already been identified, the
method continues at step 392 where the processing module
determines whether too many target DS units have already
been identified. The determining may be based on a tracking
record associated with tracking how many target DS units
have been accessed. The method branches to step 374 of
FIG. 40B when too many target DS units have not already
been identified. The method continues to step 394 when too
many target DS units have already been identified. When too
many steps have already been identified, the method con-
tinues at step 394 where the processing module indicates the
error.

When too many target DS units have not already been
identified, the method continues with steps 374-380 of FIG.
40B where the processing module outputs the DS unit access
request to the target DS unit, identifies a DSN address range
associated with the target DS unit in accordance with a
storage map when receiving an access response addressing
error, issues a range owner request to the target DS unit that
includes the identified DSN address range associated with
the target DS unit, and updates the storage map based on a
received range owner response. The method branches back
to step 372 of FIG. 40B where the processing module
identifies the target DS unit based on the DSN address.

FIG. 42A is a schematic block diagram of another
embodiment of a dispersed storage network (DSN) system
that includes the dispersed storage (DS) processing module

US 9,456,035 B2

43
350 of FIG. 40A and the DS unit set 352 of FIG. 40A. The
DS processing module includes a memory for storage of the
storage map 356 of FIG. 40A. The DS unit set 352 includes
a set of DS units 354 of FIG. 40A.

The DS unit set 352 stores one or more sets of encoded
data slices, where data is encoded using a dispersed storage
error coding function to produce the one or more sets of
encoded data slices. Each encoded data slice of the one or
more sets of encoded data slices is associated with a slice
name. Each DS unit 354 of the DS unit set is affiliated with
one or more DSN address ranges such that the encoded data
slices that correspond to the slice names within the one or
more DSN address ranges are stored in the DS unit. For
example, encoded data slices with slice names falling in a
DSN address range A are stored in a first DS unit of the DS
unit set, where the first DS unit is affiliated with the DSN
address range A. As another example, as illustrated, a second
DS unit is affiliated with a DSN address range B, and a third
DS unit is affiliated with DSN address ranges C-1, etc.

The storage map 356 includes a mapping of the one or
more DSN address ranges for each DS unit. The DS pro-
cessing module 350 utilizes the storage map 356 when
accessing one or more encoded data slices stored in the DS
unit set 352. For example, when accessing an encoded data
slice associated with a slice name within DSN address range
A, the DS processing module sends an access request to the
first DS unit when the storage map indicates that the first DS
unit is associated with the DSN address range A. The storage
map may 356 be initially generated using a deterministic
function such that DSN address ranges are evenly distrib-
uted amongst the set of DS units such that each DS unit of
the set of DS units is affiliated with a common number of
DSN addresses of a corresponding DSN address range.

From time to time, DS unit to DSN address range affili-
ations may be updated. At least one of the DS processing
module 350 and at least one DS unit of the set of DS units
352 may determine to update the DS unit to DSN address
range affiliation. The determining may be based on one or
more of detecting a storage imbalance between two DS units
of the set of DS units, receiving an error message, detecting
DS unit unavailability, a predetermination, interpreting a
schedule, and receiving a request. For example, the first DS
unit determines to migrate address range B from the first DS
unit to the second DS unit when encoded data slices stored
in the first DS unit are utilizing a greater amount of storage
capacity as compared to encoded data slices stored in the
second DS unit. When migrating the address range B from
the first DS unit to the second DS unit, each of the first DS
unit and the second DS unit update a corresponding local
storage map to indicate that DSN address range B is affili-
ated with the second DS unit and is de-affiliated from the
first DS unit. Alternatively, or in addition to, at least one of
the first DS unit and the second DS unit updates the DS
processing module to affect updating of the storage map of
the DS processing module.

In an example of operation, the DS processing module
350 (e.g., a requesting entity) issues a DSN address range C
access request 394 that includes a slice name (e.g., a read or
write request for an encoded data slice associated with the
slice name that falls within the DSN address range C) to the
first DS unit (e.g., a target DS unit) in accordance with the
storage map of the DS processing module (e.g., when the
slice name falls within DSN address range C and the storage
mayp indicates that the DSN address range C is affiliated with
the first DS unit). The first DS unit determines that the slice
name of the DSN address range C access request 394 is not
affiliated with the first DS unit (e.g., since the slice name is

10

15

20

25

30

35

40

45

50

55

60

65

44

affiliated with the second DS unit in accordance with a local
storage map of the first DS unit). When detecting that the
slice name is not affiliated with the first DS unit, the first DS
unit forwards the DSN address range C access request 394
to the second DS unit (e.g., a new target DS unit) in
accordance with the local storage map to the first DS unit.
Alternatively, the first DS unit forwards the DSN address
range C access request 394 to the third DS unit by at least
one of a direct path and via the second DS unit.

The second DS unit forwards the DSN address range C
access request 394 to the third DS unit (e.g., another new
target DS unit) in accordance with a local storage map of the
second DS unit. The third DS unit generates a DSN address
range C access response 396 based on the DSN address
range C access request and outputs the DSN address range
C access response 396 to the DS processing module (e.g.,
the requesting entity) by at least one of a direct path and via
one or more intermediary DS units.

As another example of operation, the DS processing
module issues a DSN address range B access request 366 to
the first DS unit in accordance with the storage map of the
DS processing module. The first DS unit forwards the DSN
address range B access request 366 to the second DS unit in
accordance with the local storage map of the first DS unit.
The second DS unit generates a DSN address range B access
response 368 based on the DSN address range B access
request 366. The second DS unit outputs the DSN address
range B access response 368 to the DS processing module
350 via the first DS unit (e.g., an intermediary DS unit
associated with the forwarding of the DSN address range B
access request).

FIG. 42B is a flowchart illustrating an example of access-
ing a dispersed storage (DS) unit, which includes similar
steps to FIG. 40B. The method begins with steps 370, 372,
and 374 of FIG. 40B where a processing module of a
requesting entity (e.g., of a distributed storage and task
(DST) client module, of a dispersed storage (DS) processing
module) generates a dispersed storage (DS) unit access
request based on a dispersed storage network (DSN)
address, identifies a target DS unit based on the DSN
address, and outputs the DS unit access request to the target
DS unit. The method continues at step 398 where the target
DS unit identifies a new target DS unit based on the DSN
address and a local storage map when the DSN address is not
associated with the target DS unit. The identifying includes
determining whether the DSN address is associated with the
target DS unit, and when not associated, identify the new
target DS unit from the local storage map using the DSN
address.

The method continues at step 400 where one or more
intermediary DS units that includes the target DS unit,
forwards the DS unit access request to the new target DS
unit. The forwarding includes identifying the new target DS
unit from a local storage map of one or more intermediary
DS units and sending the DS unit access request to the new
target DS unit. The method continues at step 402 where the
new target DS unit issues a DS unit access response to the
requesting entity. The issuing includes generating the DS
unit access response and outputting the DS unit access
response. The outputting the DS unit access response
includes at least one of sending the DS unit access response
directly to the requesting entity and forwarding, via the one
or more intermediary DS units, the DS unit access response
to the requesting entity.

FIG. 43A is a schematic block diagram of another
embodiment of a dispersed storage network (DSN) system
that includes the dispersed storage (DS) unit set 352 of FIG.

US 9,456,035 B2

45

40A. The DS unit set 352 includes a set of DS units 354 of
FIG. 40A. Each DS unit 354 includes a controller 404, a DS
module 406, and a memory 408. The DS module may be
implemented utilizing the DST client module 34 of FIG. 1.
The controller 404 includes at least one of a computer, a
computing device, the computing core 26 of FIG. 2, a
microprocessor, a set of microprocessors, and a computing
module. The memory 408 includes one or more memory
devices and may be implemented utilizing the memory 88 of
FIG. 3.

The DS unit set 352 may be utilized to store sets of
encoded data slices associated with one or more storage
pools. For example, six DS units of the DS unit set may be
utilized to store six encoded data slices per set of encoded
data slices associated with a first storage pool and eight DS
units of the DS unit set may be utilized to store eight
encoded data slices per set of encoded data slices associated
with a second storage pool. As such, storage utilization
levels of memories of the DS units may vary from DS unit
to DS unit.

From time to time, each DS unit 354 of the DS unit set
352 may update a centralized storage information repository.
The updating includes providing storage capacity informa-
tion and storage utilization information with regards to the
DS unit 354. The centralized storage information repository
includes at least one of a repository data object and as a set
of index entries in a dispersed hierarchical index. When the
centralized storage information repository includes the
repository data object, the repository data object may be
stored in at least one of a memory of one of the DS units 354,
a memory of a DS managing unit, a server, and as a plurality
of encoded data slices in the set of DS units.

When the centralized storage information repository
includes the set of index entries in the dispersed hierarchical
index, the dispersed hierarchical index includes generating
an index entry 410 for each DS unit 354 of the set of DS
units to produce the set of index entries. The dispersed
hierarchical index includes one or more of the set of index
entries corresponding to the set of DS units (e.g., lowest
level leaf nodes), one or more levels of index nodes utilized
to search and sort the dispersed hierarchical index (e.g.,
includes at least one root index node), and another of index
entries corresponding to another set of DS units of the DSN
system.

Each index entry 410 of the set of index entries includes
an index key field 414, a storage capacity field 416, a storage
utilization field 418, a timestamp field 420, and a signature
field 422. The index key field 414 includes an index key
entry that corresponds to an identifier of a corresponding DS
unit. The index key field 414 may be utilized to identify an
association of the index entry with the corresponding DS
unit. The storage capacity field 416 includes a storage
capacity entry corresponding to a total amount of storage
associated with the memory of the corresponding DS unit.
The storage utilization field 418 includes a storage utiliza-
tion entry corresponding to a total amount of storage
resources of the memory that are currently utilized. The
storage utilization entry includes at least one of the total
number of bytes stored, a percentage of the memory that is
utilized, utilization by vault, and utilization by vault gen-
eration. The timestamp field 420 includes a timestamp entry
corresponding to when the index entry was generated. The
signature field 422 includes a signature entry including a
digital signature over the index entry to be utilized for
subsequent verification of the index entry. In addition, the
index entry 410 may include one or more of a sibling node

10

15

20

25

30

35

40

45

50

55

60

65

46

source name and a sibling minimum index key to assist in
searching of the dispersed hierarchical index.

In an example of operation, a DS unit 354 of the DS unit
set determines to update an index entry 410 of the dispersed
hierarchical index with regards to the DS unit 354. The
determining may be based on one or more of detecting that
a time frame has expired since a previous update, receiving
a request, receiving an error message, and detecting that a
storage utilization value has changed by more than a change
threshold value. When updating the index entry 410, DS unit
354 determines storage information for the DS unit that
includes storage capacity and storage utilization. The DS
unit 354 generates an updated index entry that includes the
storage information, an index key, a timestamp, and a
signature. The DS unit 354 overwrites a corresponding index
entry in the dispersed hierarchical index with the updated
index entry. For example, the DS unit encodes the updated
index entry using a dispersed storage error coding function
to produce a set of index slices 412 and outputs the set of
index slices 412 to the set of DS units 354 for storage in a
set of corresponding memories associated with the set of DS
units (e.g., including a memory associated with the DS unit).

FIG. 43B is a flowchart illustrating an example of updat-
ing storage information. The method begins at step 424
where a processing module (e.g., of a dispersed storage (DS)
unit) determines to update an index entry of a dispersed
hierarchical index with regards to storage information of the
DS unit. The determining may be based on one or more of
detecting that a time frame from a previous update sequence
has expired, receiving a request, receiving an error message,
and detecting that a storage utilization value has changed by
more than a change threshold value. The method continues
at step 426 where the processing module determines the
storage information of the DS unit. The determining
includes one or more of accessing one or more memory
devices of the DS unit to identify a total amount of storage
capacity, identify a storage utilization level of the one or
more memory devices, and aggregate the total amount of
storage capacity and the storage utilization level to produce
the storage information.

The method continues at step 428 where the processing
module generates an updated index entry to include the
storage information. The generating includes one or more of
generating a timestamp, generating a temporary index entry
to include an index key that includes an identifier for the DS
unit, the storage information, the timestamp, and generating
a signature over the temporary index entry. The generating
further includes aggregating the temporary index entry and
the signature to produce the updated index entry.

The method continues at step 430 where the processing
module overwrites the index entry of the dispersed hierar-
chical index with the updated index entry. The overwriting
includes one or more of encoding the updated index entry
using a dispersed storage error coding function to produce a
set of index slices, identifying a dispersed storage network
(DSN) address of a node of the dispersed hierarchical index
that includes the index entry (e.g., search the dispersed
hierarchical index using the identifier of the DS unit as an
index key), generating a set of slice names based on the DSN
address, generating a set of write slice requests that includes
the set of index slices and the set of slice names, and
outputting the set of write slice requests to a set of DS units
to facilitate storage of the set of index slices in a set of
memories of the set of DS units.

The storage utilization information of each DS unit of the
set of DS units may be accessed by accessing a set of nodes
of the dispersed hierarchical index corresponding to a set of

US 9,456,035 B2

47

index entries that includes an index key associated with the
set of DS units. For example, a set of sequential leaf nodes
are identified corresponding to the DS units and the storage
information is extracted from the set of sequential leaf
nodes.

FIG. 44A is a schematic block diagram of another
embodiment of a dispersed storage network (DSN) system
that includes the dispersed storage (DS) processing unit 350
of FIG. 40A, at least one slice location module 432, and the
set of DS units 354 of FIG. 40A. The slice location module
may be implemented utilizing at least one of the DS pro-
cessing unit 354, the distributed storage and task (DST)
processing unit 16 of FIG. 1, a DST processing module, a
server, a computer, a computing device, a processing mod-
ule, a user device, a DS unit, a storage device, a storage
server, and the DST execution unit 36 of FIG. 1. The slice
location module 432 may be implemented according to at
least one of one per DSN system, one for each DS process-
ing unit 350, one for each pillar of a set of pillars associated
with sets of slices stored in the set of DS units, one for each
set of DS units, and one for each DS unit 354. Each DS unit
354 includes the controller 404 of FIG. 43A and one or more
memories 408 of FIG. 43A.

The DS processing unit 350 encodes data to produce a
plurality of sets of encoded data slices for storage in the set
of DS units. The DS processing module 350 generates a
plurality of sets of slice names for the plurality of sets of
encoded data slices. The DS processing unit 350 generates
one or more sets of slice access requests 436 that includes a
write slice indication, the plurality of sets of encoded data
slices, and the plurality of sets of slice names. The DS
processing unit 350 sends the one or more sets of slice
access requests 436 to the set of DS units 354 to facilitate
storing the plurality of sets of encoded data slices in the set
of DS units. The set of DS units issues one or more sets of
slice access responses 438 to the DS processing unit 350 that
includes one or more sets of status codes associated with
writing of the plurality of sets of encoded data slices.

Alternatively, the DS processing unit 350 may retrieve the
data from the set of DS units. When retrieving, the DS
processing unit 350 issues one or more sets of slice access
requests 436 that includes a read slice indication and the
plurality of sets of slice names. The issuing includes iden-
tifying a slice location by one or more of a local table
lookup, a directory lookup, and a query/response sequence
with the slice location module 432 to acquire slice location
information 434, and performing a slice list query/response
and/or a read slice request/response with one or more DS
units.

The slice location information 434 includes one or more
of a slice name, one or more slice name aliases, and a slice
location (e.g., a DS unit identifier, a memory identifier, a
memory device identifier). A slice name alias includes one
or more of a domain name system name (e.g., sliceA.seg-
mentB.objectC.vaultD.storageprovider.com) and an Internet
protocol address that is deterministically formed based on
one or more of a vault identifier, an object number, and a
segment number associated with a DSN address utilized to
form the slice name. The issuing further includes utilizing
the slice location to facilitate outputting the one or more sets
of slice access requests to the set of DS units. The set of DS
units 354 issues a set of slice access responses 438 to the DS
processing unit 350 that includes at least some of the
plurality of sets of encoded data slices.

From time to time, one or more of each DS unit 354 of the
set of DS units and the DS processing unit 350 may send the
slice location information 434 to the slice location module

5

10

15

20

25

30

35

40

45

50

55

60

65

48

432 for storage therein. For example, a DS unit 354 sends
the slice location information 434 to the slice location
module 432 based on one or more of an update time frame
has expired since a last update, when storing a new encoded
data slice in a memory 408, and in response to a slice
location information request. The DS processing unit 350
may send the slice location information 434 to the slice
location module 432 based on one or more of generating a
response to a slice location information request and when
outputting an encoded data slice of a slice access request
with regards to writing the encoded data slice to a DS unit.

In an example of operation, a sending entity (e.g., a DS
unit of the set of DS units, the DS processing unit) deter-
mines to post slice location information 434 to the slice
location module 432. The sending entity generates the slice
location information 434 and outputs the slice location
information 434 to the slice location module 432. The slice
location module 432 updates stored slice location informa-
tion using the slice location information 434 to produce
updated slice location information 434. The slice location
module 432 stores the updated slice location information
434. The storing includes at least one of storing the updated
slice location information 434 in a local memory of the slice
location module 432 and encoding the updated slice location
information 434 using the dispersed storage error coding
function to produce a set of location information slices for
storage in the set of DS units 354. The slice location module
432 issues slice location information 434 from the stored
slice information in response to a slice location information
request.

FIG. 44B is a flowchart illustrating an example of tracking
slice location information. The method begins at step 440
where a sending entity (e.g., of a dispersed storage (DS)
processing unit, of a DS unit) determines to issue slice
location information. The determining may be based on one
or more of outputting an encoded data slice for storage,
storing a received encoded data slice in a memory device,
detecting that an update time frame has expired, interpreting
a predetermination, and receiving a request. The method
continues at step 442 where the sending entity generates the
slice location information. The generating includes one or
more of identifying a slice name, identifying a slice name
range, identifying a DS unit associated with storage of the
encoded data slice, identifying a memory device associated
with the encoded data slice, identifying an existing slice
alias, and generating a new slice alias associated with a new
slice. The generating the new slice alias includes one or
more of generating a domain name system format alias in
accordance with a domain name system approach and based
on attributes of a dispersed storage network (DSN) address
associated with the encoded data slice (e.g., including one or
more of a vault identifier, an object number, a segment
number, etc.) and generating an Internet protocol format
alias in accordance with an Internet protocol approach based
on attributes of the DSN address associated with encoded
data slice.

The method continues at step 444 where the sending
entity outputs the slice location information to the corre-
sponding slice location module. The outputting includes one
or more of selecting the corresponding slice location module
from a plurality of slice location modules based on one or
more of a predetermination, an affiliation, a request, an
availability indicator, and a performance indicator. The
method continues at step 446 where the slice location
module updates stored slice location information using
received slice location information to produce updated slice
location information. The updating includes one or more of

US 9,456,035 B2

49

retrieving the stored slice location information (e.g., from
one or more of a local memory, a set of DS units), modifying
(e.g., appending, overwriting) the stored slice location infor-
mation using the received slice location information to
produce the updated slice location information.

The method continues at step 448 where the slice location
module stores the updated slice location information. The
storing includes at least one of storing the updated slice
location information in the local memory and issuing a set
of write slice requests that includes a set of location slices to
a set of DS units (e.g., encode, output). The method con-
tinues at step 450 where the slice location module receives
a slice location information request. The receiving includes
generating the slice location information by a requesting
entity when determining to obtain slice location information
(e.g., to enable subsequent access of the slice). The method
continues at step 452 where the slice location module issues
a slice location information response. The issuing includes
one or more of accessing a local memory using a slice name
of the request to retrieve the slice location information,
retrieving the slice location information from the set of DS
units (e.g., issuing read slice request, receiving slices,
decoding the slices to reproduce the slice location informa-
tion), generating the location information response to
include the slice location information, and outputting the
location information response to the requesting entity.

FIG. 45A is a schematic block diagram of an embodiment
of a zero expansion all or nothing transformation (AONT)
system that includes an AONT encoder 454, an error encod-
ing and slicing module 456, a dispersed storage network
(DSN) memory 458, a de-slicing and error decoding module
460, and an AONT decoder 462. The AONT encoder 454
includes a data injection module 466, a data generation
module 464, a partition module 468, one or more determin-
istic function modules 470, 474, and 478, one or more
encryption modules 472, 476, and 480, and an aggregation
module 482. The AONT decoder 462 includes a de-aggre-
gation module 484, the one or more deterministic function
modules 470, 474, and 478, one or more decryption modules
486, 488, and 490, a de-partition module 492, and a data
extraction module 494. The DSN memory 458 includes at
least one set of storage units. Each storage unit may be
implemented utilizing the distributed storage and task (DST)
execution unit 36 of FIG. 1. The zero expansion AONT
system functions to obfuscate data for storage as a set of
encoded data slices in the DSN memory 458, where the
obfuscating produces a different set of encoded data slices
for each instance of obfuscating and storing data that is
identical to a previous instance.

The data generation module 464 generates one or more of
a plurality of random data bytes (e.g., to provide variance
between storage instances) and a plurality of check bytes
(e.g., for subsequent tampering detection during recovery of
the data from the DSN memory) as generated data 498. The
data injection module 466 injects the generated data 498 into
a data segment 496 in accordance with an injection approach
to produce mixed data 500. The injection approach includes
at least one of interleaving, substituting, appending, and
performing a deterministic function. For example, the data
injection module 466 injects four bytes of random data of the
generated data 498 into the data segment every 1000 bytes
from the beginning of the data segment 496 to produce the
mixed data 500.

The partition module 468 partitions the mixed data 500 to
produce a data partition 1 and a data partition 2 in accor-
dance with a partitioning approach. The partitioning
approach includes indicating which one or more portions of

30

35

40

45

50

50

the mixed data are to be partitioned into the data partitions
1 and 2. For example, the partitioning approach indicates to
partition the mixed data 500 to include a first half of the
mixed data as the data partition 1 and to include a second
half of the mixed data as the data partition 2.

The deterministic function module 470 applies a deter-
ministic function to data partition 1 to produce a key 1. The
deterministic function includes at least one of a hashing
function, a cyclic redundancy code function, a hash based
message authentication code function, a mask generating
function, a truncation function, and a sponge function. For
example, the deterministic function module 470 applies the
mask generating function to the data partition 1 to produce
an interim result and applies a truncation function to the
interim result to produce the key 1, where the truncation
function produces the key 1 to include a number of bits for
keys utilized by the encryption module 472. The encryption
module 472 encrypts data partition 2 using key 1 to produce
encrypted data partition 2.

The deterministic function module 474 performs another
deterministic function on the encrypted data partition 2 to
produce key 2. The encryption module 476 encrypts data
partition 1 using the key 2 to produce an encrypted data
partition 1. The deterministic function module 478 performs
yet another deterministic function on the encrypted data
partition 1to produce key 3. The encryption module 480
encrypts the encrypted data partition 2 using key 3 to
produce a re-encrypted data partition 2. The aggregation
module 482 aggregates the encrypted data partition 1 and the
re-encrypted data partition 2 in accordance with an aggre-
gation scheme to produce a secure package 502. The aggre-
gation scheme includes at least one of interleaving and
appending.

The error encoding and slicing module 456 dispersed
storage error encodes the secure package 502 using a
dispersed storage error coding function to produce a slice set
504 for storage in the DSN memory 458. Upon retrieval, the
de-slicing and error decoding module 460 receives at least
some of the slice set 504 as slice set 506 from the DSN
memory 458. The de-slicing and error decoding module 460
decodes the slice set 506 using the dispersed storage error
coding function to produce a reproduced secure package
508. The de-aggregation module 484 de-aggregates the
secure package 508 in accordance with the aggregation
scheme to reproduce the encrypted data partition 1 and the
re-encrypted data partition 2.

The deterministic function module 478 of the AONT
decoder 462 performs the deterministic function performed
by deterministic function module 478 of the AONT encoder
454 to produce key 3 on the encrypted data partition 1 to
reproduce key 3. The decryption module 486 decrypts the
re-encrypted data partition 2 using the reproduced key 3 to
reproduce the encrypted data partition 2. The deterministic
function module 474 of the AONT decoder 462 performs the
deterministic function performed by the deterministic func-
tion 474 of the AONT encoder 454 to produce key 2 on the
encrypted data partition 2 to reproduce key 2. The decryp-
tion module 488 decrypts the encrypted data partition 1
using the reproduced key 2 to reproduce data partition 1. The
deterministic function module 470 of the AONT decoder
462 performs the deterministic function performed by the
AONT encoder 454 to produce key 1 on the data partition 1
to reproduce key 1. The decryption module 490 decrypts the
encrypted data partition 2 using the reproduced key 1 to
reproduce the data partition 2.

The de-partition module 492 de-partitions the data parti-
tion 1 and the data partition 2 in accordance with the

US 9,456,035 B2

51

partitioning approach to reproduce the mixed data 500. The
data extraction module 494 extracts the data segment 496
from the reproduced mixed data 500 in accordance with the
injection approach. For example, the data extraction module
494 identifies and discards the generated data 498 in accor-
dance with the injection approach. Alternatively, or in addi-
tion to, the data extraction module 494 verifies the extracted
data segment 496 by matching check bytes of the generated
data portion of the reproduced mixed data 500 in accordance
with the injection approach.

FIG. 45B is a flowchart illustrating an example of trans-
forming data. The method begins at step 510 where a
processing module (e.g., of a distributed storage and task
(DST) client module, of a dispersed storage (DS) processing
module) injects generated data into a data segment to
produce the mixed data in accordance with a data injection
scheme. The injecting includes generating the generated
data by one or more of retrieving/and/or generating a
plurality of random bytes and generating a plurality of check
bytes. The method continues at step 512 where the process-
ing module partitions the mixed data in accordance with a
partitioning approach (e.g., 50/50, 60/40) to produce first
and second data partitions.

The method continues at step 514 where the processing
module performs a deterministic function on the first data
partition to produce a first key. For example, the processing
module performs a hashing function on the first data parti-
tion to produce an interim result and truncates the interim
result to produce the first key with a desired number of bits.
The method continues at step 516 where the processing
module encrypts the second data partition using the first key
to produce an encrypted second data partition. The method
continues at step 518 where the processing module performs
the deterministic function on the encrypted second data
partition to produce a second key.

The method continues at step 520 where the processing
module encrypts the first data partition using the second key
to produce an encrypted first data partition. The method
continues at step 522 where the processing module performs
the deterministic function on the encrypted first data parti-
tion to produce a third key. The method continues at step 524
where the processing module encrypts the encrypted second
data partition using the third key to produce a re-encrypted
second data partition.

The method continues at step 526 where the processing
module aggregates the encrypted first data partition and the
re-encrypted second data partition in accordance with an
aggregation scheme to produce a secure package. The aggre-
gating includes at least one of interleaving and appending.
The method continues at step 528 where the processing
module facilitates encoding the secure package using a
dispersed storage error coding function to produce a set of
encoded data slices. For example, the processing module
encodes the secure package using the dispersed storage error
coding function to produce the set of encoded data slices.
The method continues at step 530 where the processing
module facilitates storing the set of encoded data slices in a
dispersed storage network (DSN) memory. The facilitating
includes at least one of sending the set of encoded data slices
to an output module and outputting the set of encoded data
slices to the DSN memory.

FIG. 45C is a flowchart illustrating an example of de-
transforming data. The method begins at step 532 where a
processing module (e.g., of a distributed storage and task
(DST) client module, of a dispersed storage (DS) processing
module) facilitates retrieving a set of encoded data slices
from a dispersed storage network (DSN) memory. The

10

15

20

25

30

35

40

45

50

55

60

65

52

facilitating includes at least one of issuing slice retrieval
requests and receiving at least a decode threshold number of
encoded data slices of the set of encoded data slices from the
DSN memory. The method continues at step 534 where the
processing module facilitates decoding the set of encoded
data slices using a dispersed storage error encoding function
to reproduce a secure package. The facilitating includes
decoding the at least the decode threshold number of
encoded data slices of the set of encoded data slices using
the dispersed storage error coding function to reproduce the
secure package. The method continues at step 536 where the
processing module de-aggregates the secure package in
accordance with an aggregation scheme to reproduce an
encrypted first data partition and a re-encrypted second data
partition.

The method continues at step 538 where the processing
module performs a deterministic function on the encrypted
first data partition to reproduce a third key, where the
deterministic function is substantially the same as a deter-
ministic function utilized by a transforming data function to
produce the third key. The method continues at step 540
where the processing module decrypts the re-encrypted
second data partition using the third key to reproduce an
encrypted second data partition. The method continues at
step 542 where the processing module performs the deter-
ministic function on the encrypted second data partition to
reproduce a second key, where the deterministic function is
substantially the same as a deterministic function utilized by
the transforming data function to produce the second key.
The method continues at step 544 where the processing
module decrypts the encrypted first data partition using the
second key to reproduce a first data partition. The method
continues at step 546 where the processing module performs
the deterministic function on the first data partition to
reproduce a first key, where the deterministic function is
substantially the same as a deterministic function utilized by
the transforming data function to produce the first key. The
method continues at step 548 where the processing module
decrypts the encrypted second data partition using the first
key to reproduce a second data partition.

The method continues at step 550 where the processing
module de-partitions the first and second data partitions in
accordance with a partitioning approach to reproduce mixed
data, where the partitioning approach is substantially the
same as a partitioning approach utilized by the transforming
data function to reproduce the mixed data. The method
continues at step 552 where the processing module extracts
a data segment from the mixed data in accordance with a
data injection scheme, where the data injection scheme is
substantially the same as a data injection scheme utilized by
the transforming data function to inject generated data into
the data segment to produce the mixed data. For example,
the processing module discards random bytes that were
injected into the data segment. Alternatively, or in addition
to, the processing module validates the data segment by
comparing extracted check bytes of the mixed data to
expected check bytes. For example, the processing module
retrieves the expected check bytes from a local memory,
extracts the checks bytes in accordance with the injection
scheme from the mixed data, compares the extracted check
bytes to the expected check bytes, and indicates that the data
segment is valid (e.g., not tampered with) when the com-
parison is favorable (e.g., substantially the same).

FIGS. 46A, 46C, 46D, and 46E are schematic block
diagrams of another embodiment of a dispersed storage
network (DSN) system illustrating an example of storing
related data. The DSN system includes distributed storage

US 9,456,035 B2

53

and task (DST) client modules 1-M, the network 24 of FIG.
1, a DST execution unit set 560, and a binding module 562.
Each DST client module may be implemented using the
DST client module 34 of FIG. 1. Hereafter, the DST client
modules 1-M may be referred to interchangeably as write
requesting modules. DST execution unit set 560 includes a
set of DST execution units 1-n. Each DST execution unit
may be implemented utilizing the DST execution unit 36 of
FIG. 1. Hereafter, the DST execution units 1-n may be
referred to interchangeably as storage units 1-n of the DSN
memory. Alternatively, the DSN includes any number of
DST execution unit sets 560. The binding module 562 may
be implemented utilizing one or more of the DST client
module 34 of FIG. 1, the DST execution unit 36 of FIG. 1,
a server, a user device, the distributed storage and task
network (DSTN) managing unit 18 of FIG. 1, and the DST
integrity processing unit 20 of FIG. 1. Alternatively, the
DSN includes any number of binding modules 562.

A computer readable storage medium of the DSN includes
one or more memory sections. Each memory section stores
operational instructions. Each of the DST client modules
1-M, the DST execution units 1-n, and the binding module
562 includes one or more processing modules of one or more
computing devices of the DSN. The one or more processing
modules execute the operational instructions stored by one
or more memory sections. As a specific example, a first
memory section stores operational instructions that are
executed by the one or more processing modules of the DST
client modules 1-M to cause the one or more computing
devices to perform functions of the write requesting entities
(e.g., the DST client modules 1-M). As another specific
example, a second memory section stores operational
instructions that are executed by the one or more processing
modules of the binding module 562 to cause the one or more
computing devices to perform functions of the binding
module 562. As yet another specific example, a third
memory section stores operational instructions that are
executed by the one or more processing modules of the DST
execution units 1-n to cause the one or more computing
devices to perform functions of the storage units 1-n of the
DSN memory (e.g., the DST execution units 1-n).

FIG. 46A illustrates initial steps of the example of the
storing of the related data. As a specific example, each of a
group of DST client modules 1-2 generates one or more sets
of write requests (e.g., write slice requests 1, write slice
requests 2) regarding one of a group of portions of the
related data. Each write request includes an encoded data
slice and information indicating that the write request cor-
responds to a portion of the group of portions of the related
data. The write request may further include a slice name of
the encoded data slice, a request number, and a slice revision
number of the encoded data slice. A data segment of the
portion of the group of portions of the related data is
encoded to produce a set of encoded data slices, which
includes the encoded data slice.

In an instance of the example, the DST client module 1
dispersed storage error encodes a first data object to produce
a first plurality of sets of encoded data slices and the DST
client module 1 dispersed storage error encodes a second
data object to produce a second plurality of sets of encoded
data slices, where the related data includes the first data
object and the second data object. Having generated the first
and second plurality of sets of encoded data slices, the DST
client module 1 generates the write slice requests 1 to
include a set of write slice requests 1-1, 1-2, 1-3, through 1-n
and the DST client module 2 generates the write slice
requests 2 to include another set of write slice requests 2-1,

25

40

45

50

55

54

2-2,2-3, through 2-n. The set of write slice requests 1-1, 1-2,
1-3, through 1-n includes the first plurality of sets of
encoded data slices and the other set of write slice requests
2-1, 2-2, 2-3, through 2-n includes the second plurality of
sets of encoded data slices. The method of generating the
one or more sets of write requests is discussed in greater
detail with reference to FIG. 46B.

The information indicating that the write request corre-
sponds to the portion of the group of portions of the related
data includes a field within the write request to indicate one
or more of the write request corresponds to the related data
(e.g., a different transaction number from each of the DST
client modules), a total number of sets of write requests
regarding the related data, a current number of a set of the
sets of write requests regarding the related data, a size of the
related data, and an identifier of the binding module. Having
generated the one or more sets of write requests, the group
of DST client modules 1 and 2 (e.g., the group of write
requesting modules) sends a group of the one or more sets
of write requests to the DST execution unit set 560 (e.g., the
DSN memory of the DSN). For instance, the DST client
module 1 sends, via the network 24, the set of write slice
requests 1-1, 1-2, 1-3, through 1-n to the DST execution
units 1-n and the DST client module 2 sends, via the network
24, the other set of write slice requests 2-1, 2-2, 2-3, through
2-n to the DST execution units 1-n.

Having sent the group of the one or more sets of write
requests to the DST execution unit set 560 (e.g., the DSN
memory), the group of DST client modules 1-2 sends
binding information to the binding module 562 of the DSN.
The binding information includes transaction information
from each of the group of DST client modules 1-2 (e.g., the
group of write requesting modules). The transaction infor-
mation includes, from each of the group of DST client
modules 1-2, the different transaction number that indicates
a separate write operation and an identifier of a correspond-
ing DST client module. The transaction information may
further include, for each different transaction number, a
write threshold number, a commit threshold number, and a
temporary authorization token to enable the binding module
562 to access the DST execution unit set 560 and the half of
the corresponding DST client module. In an instance of
sending the binding information, the DST client module 1
generates binding information 1 to include a transaction
number 51 associated with writing of the first plurality of
sets of encoded data slices, identifier 1 for DST client
module 1, a write threshold number of 14 for the transaction
number 51, and a commit threshold number of 13 for the
transaction number 51.

FIG. 46B is a schematic block diagram of another
embodiment of a distributed storage and task (DST) client
module further illustrating the example of the storing the
related data by the group of DST client modules 1-2. Each
DST client module includes the outbound dispersed storage
(DS) processing module 80 of FIG. 3. The outbound DS
processing module 80 includes a data portioning 564, the
data partition 110 of FIG. 4, the DS error encoding 112 of
FIG. 4, and the grouping selector 114 of FIG. 4.

In the example of the storing of the related data, the group
of DST client modules 1-2 generates the one or more sets of
write requests regarding the one of the group of portions of
the related data 566. As a specific example, having access to
the related data 566 and unrelated data 568 (e.g., including
data objects 1-3), the group of DST client modules 1-2
determines that data objects 5 and 8 are related to produce
the related data 566 for storing in the DSN memory. As such,
the group of DST client modules 1-2 determines to exclude

US 9,456,035 B2

55

the data objects 1-3 from the related data 566. For instance,
the group of DST client modules 1-2 receives a command to
relate the data objects 5 and 8 into the related data 566. As
another instance, the group of DST client modules 1-2
identifies a common source of the data objects 5 and 8. As
yet another instance, the group of DST client modules 1-2
receives the data objects 5 and 8 concurrently within a given
time frame (e.g., within one minute). As a further instance,
the group of DST client modules 1-2 identifies a common
data type of the data objects 5 and 8. As a still further
instance, the group of DST client modules 1-2 interprets
metadata of the data objects 5 and 8. As yet a still further
instance, the group of DST client modules 1-2 generates a
data object 8 as metadata of data object 5. In a specific
example of the related data 566, the data object 5 is a tenth
revision of a sixth chapter of a book and the data object 8 is
a tenth revision of a table of contents for the book. In another
specific example of the related data 566, data objects 5 and
8 are portions of a larger data object.

Having determined the related data 566, for each DST
client module of the group of DST client modules 1-2, the
data portioning 564 sclects at least some of the group of
portions of the related data 566. For example, the data
portioning 564 of the DST client module 1 selects a first
portion of the data object 5 to produce a data portion 570 and
the data portioning 564 of the DST client module 2 selects
a corresponding first portion of the data object 8 to produce
another data portion 570. Having selected the at least some
of the group of portions of the related data 566, each data
partition 110 partitions each corresponding data portion 570
in accordance with a segmentation scheme to produce one or
more data segments 572. The segmentation scheme includes
at least one of utilizing a predetermined fixed segment size,
using a ramping up segment size, and utilizing a ramping
down segment size.

Having produced the one or more data segments 572, for
each data segment 572, the DS error encoding 112 dispersed
storage error encodes the data segment 572 to produce an
encoded data slice set 574 (e.g., a corresponding set of
encoded data slices) of a corresponding plurality of sets of
encoded data slices. For example, the DS error encoding 112
of the DST client module 1 generates the first plurality of
sets of encoded data slices corresponding to the portion of
the data object 5 and the DS error encoding 112 of the DST
client module 2 generates the second plurality of sets of
encoded data slices corresponding to the portion of the data
object 8.

Having produced the corresponding plurality of sets of
encoded data slices, each grouping selector 114 generates
each write request of the one or more sets of write requests
to include the corresponding plurality of sets of encoded
data slices and the information indicating that the write
request corresponds to the first portion of the group of
portions of the related data 566. For example, the grouping
selector 114 generates the write requests 1 to include the set
of'write slice requests 1-1, 1-2, 1-3, through 1-n and the DST
client module 2 generates the write slice requests 2 to
include the other set of write slice requests 2-1, 2-2, 2-3,
through 2-n. The set of write requests 1-1, 1-2, 1-3, through
1-n includes the first plurality of sets of encoded data slices
corresponding to the portion of the data object 5 and first
information indicating that the write slice requests 1 corre-
sponds to the first portion of the group of portions of the data
object 5 (e.g., the transaction number 51). The other set of
write requests 2-1, 2-2, 2-3, through 2-n includes the second
plurality of sets of encoded data slices corresponding to the
portion of the data object 8 and second information indicat-

20

25

35

40

45

56

ing that the write slice requests 2 corresponds to the first
portion of the group of portions of the data object 8 (e.g., a
transaction number 81).

FIG. 46C illustrates further steps of the example of the
storing of the related data. As a specific example, each DST
execution unit receives at least some of the one or more sets
of write slice requests and interprets the information indi-
cating that the write request corresponds to the portion of the
group of portions of the related data and communicates with
the binding module 562 regarding processing the remaining
phases. As an example of the interpreting, the DST execu-
tion unit set 1-n interprets the set of write slice requests 1-1,
1-2, 1-3, through 1-n to associate the DST client module 1
with the transaction number 51 of the set of write slice
requests 1-1, 1-2, 1-3, through 1-n and to associate the
transaction number 51 with the binding module 562. As
another example of the interpreting, the DST execution unit
set 1-n interprets the other set of write slice requests 2-1, 2-2,
2-3, through 2-n to associate the DST client module 2 with
the transaction number 81 of the set of write slice requests
2-1, 2-2, 2-3, through 2-n and to associate the transaction
number 81 with the binding module 562.

As an example of the communicating with the binding
module 562 regarding processing the remaining phases, the
DST execution unit set 1-n processes the received write
requests to produce a corresponding write responses. Each
corresponding write response determines whether the write
request was successfully executed (e.g., storing an encoded
data slice without error). Each DST execution unit generates
a favorable write response status when the corresponding
write request was successfully executed. Each DST execu-
tion unit generates an unfavorable write response status
when the corresponding write request was not successfully
executed (e.g., addressing error, communication error, a
write conflict error, insufficient storage space, etc.).

Having determined whether each write request was suc-
cessfully executed, the DST execution unit set 1-n issues, via
the network 24, a set of write slice responses 1-1, 1-2, 1-3,
through 1-n to the binding module 562 as write slice
responses 576, where the set of write slice responses 1-1,
1-2, 1-3, through 1-n indicates the status of the correspond-
ing set of write slice requests 1-1, 1-2, 1-3, through 1-n. The
DST execution unit set 1-n further issues, via the network
24, another set of write slice responses 2-1, 2-2, 2-3, through
2-n to the binding module 562 as further write slice
responses 576, where the set of write slice responses 2-1,
2-2, 2-3, through 2-n indicates the status of the correspond-
ing set of write slice requests 2-1, 2-2, 2-3, through 2-n.

The binding module 562 receives, via the network 24, the
write slice responses 576 and determines whether a favor-
able response to the group of the one or more sets of write
requests is received. The determining includes, for each set
of encoded data slices of each of the pluralities of sets of
encoded data slices, determining whether a corresponding
write threshold number of favorable write slice responses
have been received within a response timeframe. For
example, the binding module 562 extracts the write thresh-
old number of 14 for the transaction number 51 from the
binding information 1, extracts a write threshold number of
15 for the transaction number 81 from binding information
2, and indicates the favorable response when at least 14
favorable write slice responses have been received for each
set of encoded data slices of the first plurality of sets of
encoded data slices corresponding to the data object 5 and at
least 15 favorable write slice responses have been received

US 9,456,035 B2

57

for each set of encoded data slices of the second plurality of
sets of encoded data slices corresponding to the data object
8.

FIG. 46D illustrates further steps of the example of the
storing of the related data. As a specific example, the binding
module 562 processes remaining phases of the group of the
one or more sets of write requests for writing the related data
into the DST execution unit set 560 as a single set of write
requests. The remaining phases, after a first phase that
includes the writing, includes a second phase that includes
one of a commit or rollback, and a third phase that includes
one of a finalize or undo.

As an example of the second phase, when the favorable
response to the group of the one or more sets of write
requests is received, the binding module 562 issues, via the
network 24, transaction requests 1 and 2 on behalf of the
DST client modules 1-2 to the set of DST execution units
1-2, where the transaction requests 1 and 2 includes a set of
write commit requests for the group of portions of the related
data. The issuing includes the binding module 562 generat-
ing the set of write commit requests to include the different
transaction numbers from each of the write requesting
modules. For instance, the binding module 562 generates the
set of write commit requests to include the transaction
number 51, the transaction number 81, the temporary access
token from DST client module 1, and a temporary access
token from DST client module 2; and sends, via the network
24, the set of write commit requests to the set of DST
execution units 1-n. When receiving a corresponding write
commit request, each DST execution unit changes status of
encoded data slices of each of the pluralities of sets of
encoded data slices based on the corresponding transaction
number to indicate that the corresponding encoded data
slices are accessible (e.g., visible versions for retrieval). The
changing of the status may further include each DST execu-
tion unit verifying each temporary access token and chang-
ing the status when each corresponding temporary access
token has been verified.

As another example of the second phase, when the
favorable response to the group of the one or more sets of
write requests is not received, the binding module 562
issues, via the network 24, the transaction requests 1 and 2
on the behalf of the DST client modules 1-2 to the set of
DST execution units 1-2, where the transaction requests 1
and 2 includes a set of write rollback requests for the group
of portions of the related data. The issuing includes the
binding module 562 generating set of write rollback requests
for the group of portions of the related data to include the
different transaction numbers from each of the write request-
ing modules. For instance, the binding module 562 generates
the set of write rollback requests to include the transaction
number 51, the transaction number 81, the temporary access
token from DST client module 1, and the temporary access
token from DST client module 2. Having generated the set
of'write rollback requests, the binding module 562 sends, via
the network 24, the set of write rollback requests the set of
DST execution units 1-n. When receiving a corresponding
write rollback request, each DST execution unit deletes the
encoded data slices of each of the pluralities of sets of
encoded data slices based on the corresponding transaction
number.

Having sent the set of write rollback requests, the binding
module 562 may notify each of the group of DST client
modules 1-2 (e.g., write requesting modules) of rollback of
the writing of the related data. For example, the binding
module 562 issues a notification 1 to the DST client module
1 and issues a notification 2 to the DST client module 2,

25

40

45

58

where each notification includes one or more of a corre-
sponding transaction number, a DST client module identi-
fier, the identifier of the binding module, and status (e.g.,
rollback) of the corresponding transaction. Having received
the rollback status, the group of DST client modules 1-2 may
subsequently re-issue the write requests to the DST execu-
tion unit set 560.

As an example of the third phase, the set of DST execu-
tion unit 1-n issues, via the network 24, transaction
responses 1 and 2 to the binding module 562 with regards to
the transaction requests 1 and 2 of the second phase. For
example, the set of DST execution unit 1-n issues a set of
write commit responses based on processing of the set of
write commit requests. For instance, DST execution unit 2
issues a favorable write commit response indicating that a
corresponding write commit request was successfully pro-
cessed. The issuing includes determining that the write
commit request was successfully processed for each
encoded data slice of each set of encoded data slices of each
of the pluralities of sets of encoded data slices for the
transaction numbers 51 and 81 and issuing the favorable
write commit response when the write commit request was
successfully processed for each encoded data slice of each
transaction.

The binding module 562 determines whether a favorable
response to the set of write commit requests is received
based on received write commit responses. For example, the
binding module indicates the favorable response to the set of
write commit requests when receiving at least a commit
threshold number of favorable write commit responses,
where the commit threshold is based on at least one of the
commit thresholds of the transactions 51 and 81. For
instance, the binding module indicates the favorable
response when receiving 15 favorable write commit
responses and a highest commit threshold number of each
commit threshold number associated with each transaction is
15.

When the favorable response to the set of write commit
requests is received, the binding module issues, via the
network 24, further transaction requests 1 and 2 to the set of
DST execution units 1-2, where the further transaction
requests 1 and 2 includes a set of write finalize requests for
the group of portions of the related data. The issuing
includes the binding module 562 generating the set of write
finalize requests to include one or more of a plurality of sets
of slice names for each of the pluralities of sets of encoded
data slices, a plurality of sets of revision numbers for each
of the pluralities of sets of encoded data slices, and the
different transaction numbers from each of the write request-
ing modules. When receiving a corresponding write finalize
request, each DST execution unit changes a status of the
corresponding transaction of writing the encoded data slices
of each of the pluralities of sets of encoded data slices to
indicate that the corresponding transaction has ended and
that any locks on writing slices associated with the plurality
of sets of slice names are unlocked allowing others to write
further encoded data slices of the same plurality of sets of
slice names. The changing of the transaction status may
further include each DST execution unit verifying each
temporary access token and changing the status when each
corresponding temporary access token has been verified.

Having sent the set of write finalize requests to the DST
execution unit set 560, the binding module 562 notifies each
of the DST client modules of finalizing of the writing the
related data. For example, the binding module 562 issues the
notification 1 to the DST client module 1 and issues the
notification 2 to the DST client module 2, where each

US 9,456,035 B2

59

notification includes one or more of the corresponding
transaction number, the DST client module identifier, the
identifier of the binding module, and status (e.g., finalize) of
the corresponding transaction.

As another example of the third phase, when the favorable
response to the set of write commit requests is not received,
the binding module 562 issues further transaction requests 1
and 2 to the set of DST execution units 1-2, where the further
transaction requests 1 and 2 includes a set of write undo
requests for the group of portions of the related data. For
example, the binding module 562 generates the set of write
undo requests for the group of portions of the related data to
include one or more of the plurality of sets of slice names for
each of the pluralities of sets of encoded data slices, the
plurality of sets of revision numbers for each of the plurali-
ties of sets of encoded data slices, and the different trans-
action numbers from each of the write requesting modules.
Having generated the set of write undo requests, the binding
module 562 sends, via the network 24, the set of write undo
requests to the set of DST execution units 1-2.

When receiving a corresponding write undo request, each
DST execution unit deletes the encoded data slices of each
of the pluralities of sets of encoded data slices based on the
corresponding transaction number and changes the status of
the corresponding transaction number to inactive. When
receiving the corresponding write undo request, each DST
execution unit may further change the status of the corre-
sponding transaction of writing the encoded data slices of
each of the pluralities of sets of encoded data slices to
indicate that the corresponding transaction has ended and
that any locks on writing slices associated with the plurality
of sets of slice names are unlocked allowing others to write
further encoded data slices of the same plurality of sets of
slice names. The changing of the transaction status may
further include each DST execution unit verifying each
temporary access token and changing the status when each
corresponding temporary access token has been verified.

Having sent the set of write undo requests, the binding
module 562 may notify each of the group of DST client
modules 1-2 (e.g., write requesting modules) of undoing of
the writing of the related data. For example, the binding
module 562 issues yet another notification 1 to the DST
client module 1 and issues yet another notification 2 to the
DST client module 2, where each notification includes one
or more of the corresponding transaction number, the DST
client module identifier, the identifier of the binding module,
and status (e.g., undo) of the corresponding transaction.
Having received the undo status, the group of DST client
modules 1-2 may subsequently re-issue the write requests to
the DST execution unit set 560.

FIG. 46F illustrates final steps of the example of the
storing of the related data. As a specific example, the binding
module 562 notifies the group of the DST client modules 1-2
(e.g., the write requesting modules) of status (e.g., transac-
tion status) of the writing the related data into the DST
execution unit set 560 at completion of the processing of the
remaining phases. For example, the binding module 562
generates transaction status 1 and transaction status 2, where
the transaction status 1 and 2 indicates a favorable status
(e.g., succeeded) of the writing of the related data when the
transactions 51 and 81 both successfully completed the
processing of the other remaining phases (e.g., ending with
sending of the write finalize requests for both transactions).
As such, while the related data is written into the DST
execution unit set 560 in pieces over time as groups of

40

45

50

55

60

portions, the related data is made accessible as a single piece
of data when the processing of the remaining phases is
successful.

As another example, the binding module 562 generates
transaction status 1 and transaction status 2, where the
transaction status 1 and 2 indicates an unfavorable status
(e.g., failed) of the writing of the related data when at least
one of the transaction numbers 51 and 81 did not success-
fully complete the processing of the remaining phases (e.g.,
ending with sending of at least one of the write rollback
requests and the write undo requests for at least one of the
transactions). As such, when the processing of the remaining
phases is not successful, none of the pieces of the related
data are accessible.

FIG. 46F is a flowchart illustrating an example of storing
related data. The method begins with step 580 where a group
of write requesting modules of a dispersed storage network
(DSN) determines the data objects are related to produce
related data. The determining includes at least one of receiv-
ing a command to relate the data objects into the related data,
identifying a common source of the data objects, receiving
the data objects concurrently within a given time frame,
identifying a common data type of the data objects, and
interpreting metadata of the data objects.

The method continues at step 582 where each of the group
of write requesting modules generates one or more sets of
write requests regarding one of a group of portions of the
related data. A write request of the one or more sets of write
requests includes an encoded data slice and information
indicating that the write request corresponds to a portion of
the group of portions of the related data. A data segment of
the portion of the group of portions of the related data is
encoded to produce a set of encoded data slices. The set of
encoded data slices includes the encoded data slice.

The method continues at step 584 where the group of
write requesting modules sends a group of the one or more
sets of write requests to DSN memory of the DSN. The
method continues at step 586 where the group of write
requesting module sends binding information to a binding
module of the DSN. The method continues at step 588 where
storage units of the DSN memory interpret the information
indicating that the write request corresponds to the portion
of the group of portions of the related data. The method
continues at step 590 where the storage units communicate
with the binding module regarding processing the remaining
phases of the group of the one or more sets of write requests
for writing the related data into the DSN memory.

The method continues at step 592 where the binding
module processes the remaining phases of the group of the
one or more sets of write requests for writing the related data
into the DSN memory as a single set of write requests. As
an example of the processing of the remaining phases by the
binding module, when a favorable response to the group of
the one or more sets of write requests is received, the binding
module generates a set of write commit requests for the
group of portions of the related data and sends the set of
write commit requests to the DSN memory. When the
favorable response to the group of the one or more sets of
write requests is not received, the binding module generates
a set of write rollback requests for the group of portions of
the related data, sends the set of write rollback requests to
the DSN memory, and notifies each of the group of write
requesting modules of rollback of the writing the related
data.

As another example of the processing of the remaining
phases, when a favorable response to the set of write commit
requests is received, the binding module generates a set of

US 9,456,035 B2

61

write finalize requests for the group of portions of the related
data, sends the set of write finalize requests to the DSN
memory, and notifies each of the group of write requesting
modules of finalizing of the writing the related data. When
the favorable response to the set of write commit requests is
not received, the binding module generates a set of write
undo requests for the group of portions of the related data,
sends the set of write undo requests to the DSN memory, and
notifies each of the group of write requesting modules of
undoing of the writing the related data.

The method continues at step 594 where the binding
module notifies the write requesting modules of status (e.g.,
transaction status) of the writing the related data into the
DSN memory at completion of the processing of the remain-
ing phases. As such, the related data is written into the DSN
memory in pieces over time as groups of portions and the
related data is made accessible as a single piece of data when
the processing of the remaining phases is successful. When
the processing of the remaining phases is not successful,
none of the pieces of the related data are accessible.

FIG. 47 is a flowchart illustrating an example of synchro-
nously storing two or more data objects in a dispersed
storage network (DSN). The method begins at step 600
where a processing module (e.g., of a distributed storage and
task (DST) client module, of a dispersed storage (DS)
processing module) selects two or more write transactions to
be associated with a common write transaction. The method
continues at step 602 where a binding module obtains
binding information with regards to the two or more write
transactions from one or more DS processing modules
associated with the two or more write transactions. The
method continues at step 604 where the binding module
receives transaction responses (e.g., write slice responses)
from one or more DS units sets with regards to the two or
more write transactions.

The method continues at step 606 where the binding
module determines that a favorable number of write
acknowledgments (e.g., write slice responses) have been
received for a first write transaction of the two or more write
transactions. For example, the binding module receives at
least a write threshold number of favorable (e.g., succeeded)
write slice responses with regards to the first write transac-
tion.

When the favorable number of write acknowledgments
have been received, the method continues at step 608 where
the binding module issues a commit transaction request to a
corresponding DS unit set of the one or more DS units sets
to commit the first write transaction. The issuing includes
issuing a commit write transaction request to each DS unit
of the corresponding DS unit set where the transaction
request includes a common transaction number with the first
write transaction. Alternatively, when the favorable number
of write acknowledgments have not been received within a
time frame, the binding module issues rollback transaction
requests to the one or more DS units sets with regards to the
two or more write transactions (e.g., a rollback transaction
request issued to a DS unit set includes a common transac-
tion number with the corresponding write transaction).

The method continues at step 610 where the binding
module determines that a favorable number of commit
acknowledgments have been received for the first write
transaction. For example, the binding module receives at
least a write threshold number of favorable commit trans-
action responses. Alternatively, when the favorable number
of commit transactions have not been received for the first
write transaction within a time frame, the binding module
issues undo transaction requests to the DS unit set that

10

15

20

25

30

35

40

45

50

55

60

65

62

corresponds to the first write transaction and issues rollback
transaction requests to remaining DS units sets of the one or
more DS units sets with regards to other write transactions
of the two or more write transactions.

When the favorable number of commit transaction
responses have been received with regards to the first write
transaction, the method continues at step 612 where the
binding module determines that a favorable number of write
acknowledgments have been received for a second write
transaction of the two or more write transactions. For
example, the binding module receives at least a write
threshold number of favorable write slice responses with
regards to the second write transaction. Alternatively, when
the favorable number write acknowledgments have not been
received for the second write transaction within a time
frame, the binding module issues the undo transaction
requests to the DS unit set that corresponds to the first write
transaction and issues the rollback transaction requests to
remaining DS units sets of the one or more DS units sets
with regards to other write transactions of the two or more
write transactions.

When a favorable number of write acknowledgments
have been received for the second write transaction, the
method continues at step 614 where the binding module
issues a commit transaction request to another correspond-
ing DS unit set (e.g., associated with the second write
transaction) of the one or more DS units sets to commit the
second write transaction. The method continues at step 616
where the binding module determines that a favorable
number of commit acknowledgments have been received for
the second write transaction. Alternatively, when the favor-
able number of commit transactions have not been received
for the second write transaction within a time frame, the
binding module issues undo transaction requests to the DS
unit set that corresponds to the second write transaction,
issues undo transaction requests to the DS unit set that
corresponds to the first write transaction, and issues rollback
transaction requests to remaining DS units sets of the one or
more DS units sets with regards to other write transactions
of the two or more write transactions that have not received
commit requests. When the favorable number of commit
acknowledgments have been received for each write trans-
action of the two or more write transactions, the method
continues at step 618 where the binding module issues
finalize transaction requests to each of the one or more DS
units sets with regards to each of the two or more write
transactions including the first transaction and the second
transaction.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a differ-
ence of a few percent to magnitude differences. As may also
be used herein, the term(s) “operably coupled to”, “coupled
t0”, and/or “coupling” includes direct coupling between
items and/or indirect coupling between items via an inter-
vening item (e.g., an item includes, but is not limited to, a
component, an element, a circuit, and/or a module) where,
for indirect coupling, the intervening item does not modify
the information of a signal but may adjust its current level,
voltage level, and/or power level. As may further be used
herein, inferred coupling (i.e., where one element is coupled
to another element by inference) includes direct and indirect

US 9,456,035 B2

63

coupling between two items in the same manner as “coupled
t0”. As may even further be used herein, the term “operable
t0” or “operably coupled to” indicates that an item includes
one or more of power connections, input(s), output(s), etc.,
to perform, when activated, one or more its corresponding
functions and may further include inferred coupling to one
or more other items. As may still further be used herein, the
term ““associated with”, includes direct and/or indirect cou-
pling of separate items and/or one item being embedded
within another item. As may be used herein, the term
“compares favorably”, indicates that a comparison between
two or more items, signals, etc., provides a desired relation-
ship. For example, when the desired relationship is that
signal 1 has a greater magnitude than signal 2, a favorable
comparison may be achieved when the magnitude of signal
1 is greater than that of signal 2 or when the magnitude of
signal 2 is less than that of signal 1.

As may also be used herein, the terms “processing mod-
ule”, “processing circuit”, and/or “processing unit” may be
a single processing device or a plurality of processing
devices. Such a processing device may be a microprocessor,
micro-controller, digital signal processor, microcomputer,
central processing unit, field programmable gate array, pro-
grammable logic device, state machine, logic circuitry, ana-
log circuitry, digital circuitry, and/or any device that
manipulates signals (analog and/or digital) based on hard
coding of the circuitry and/or operational instructions. The
processing module, module, processing circuit, and/or pro-
cessing unit may be, or further include, memory and/or an
integrated memory element, which may be a single memory
device, a plurality of memory devices, and/or embedded
circuitry of another processing module, module, processing
circuit, and/or processing unit. Such a memory device may
be a read-only memory, random access memory, volatile
memory, non-volatile memory, static memory, dynamic
memory, flash memory, cache memory, and/or any device
that stores digital information. Note that if the processing
module, module, processing circuit, and/or processing unit
includes more than one processing device, the processing
devices may be centrally located (e.g., directly coupled
together via a wired and/or wireless bus structure) or may be
distributedly located (e.g., cloud computing via indirect
coupling via a local area network and/or a wide area
network). Further note that if the processing module, mod-
ule, processing circuit, and/or processing unit implements
one or more of its functions via a state machine, analog
circuitry, digital circuitry, and/or logic circuitry, the memory
and/or memory element storing the corresponding opera-
tional instructions may be embedded within, or external to,
the circuitry comprising the state machine, analog circuitry,
digital circuitry, and/or logic circuitry. Still further note that,
the memory element may store, and the processing module,
module, processing circuit, and/or processing unit executes,
hard coded and/or operational instructions corresponding to
at least some of the steps and/or functions illustrated in one
or more of the Figures. Such a memory device or memory
element can be included in an article of manufacture.

The present invention has been described above with the
aid of method steps illustrating the performance of specified
functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention. Further, the boundaries of these func-

20

25

30

40

45

55

64

tional building blocks have been arbitrarily defined for
convenience of description. Alternate boundaries could be
defined as long as the certain significant functions are
appropriately performed. Similarly, flow diagram blocks
may also have been arbitrarily defined herein to illustrate
certain significant functionality. To the extent used, the flow
diagram block boundaries and sequence could have been
defined otherwise and still perform the certain significant
functionality. Such alternate definitions of both functional
building blocks and flow diagram blocks and sequences are
thus within the scope and spirit of the claimed invention.
One of average skill in the art will also recognize that the
functional building blocks, and other illustrative blocks,
modules and components herein, can be implemented as
illustrated or by discrete components, application specific
integrated circuits, processors executing appropriate soft-
ware and the like or any combination thereof.

The present invention may have also been described, at
least in part, in terms of one or more embodiments. An
embodiment of the present invention is used herein to
illustrate the present invention, an aspect thereof, a feature
thereof, a concept thereof, and/or an example therecof. A
physical embodiment of an apparatus, an article of manu-
facture, a machine, and/or of a process that embodies the
present invention may include one or more of the aspects,
features, concepts, examples, etc. described with reference
to one or more of the embodiments discussed herein. Fur-
ther, from figure to figure, the embodiments may incorporate
the same or similarly named functions, steps, modules, etc.
that may use the same or different reference numbers and, as
such, the functions, steps, modules, etc. may be the same or
similar functions, steps, modules, etc. or different ones.

While the transistors in the above described figure(s)
is/are shown as field effect transistors (FETs), as one of
ordinary skill in the art will appreciate, the transistors may
be implemented using any type of transistor structure includ-
ing, but not limited to, bipolar, metal oxide semiconductor
field effect transistors (MOSFET), N-well transistors, P-well
transistors, enhancement mode, depletion mode, and zero
voltage threshold (VT) transistors.

Unless specifically stated to the contra, signals to, from,
and/or between elements in a figure of any of the figures
presented herein may be analog or digital, continuous time
or discrete time, and single-ended or differential. For
instance, if a signal path is shown as a single-ended path, it
also represents a differential signal path. Similarly, if a signal
path is shown as a differential path, it also represents a
single-ended signal path. While one or more particular
architectures are described herein, other architectures can
likewise be implemented that use one or more data buses not
expressly shown, direct connectivity between elements, and/
or indirect coupling between other elements as recognized
by one of average skill in the art.

The term “module” is used in the description of the
various embodiments of the present invention. A module
includes a processing module, a functional block, hardware,
and/or software stored on memory for performing one or
more functions as may be described herein. Note that, if the
module is implemented via hardware, the hardware may
operate independently and/or in conjunction software and/or
firmware. As used herein, a module may contain one or more
sub-modules, each of which may be one or more modules.

While particular combinations of various functions and
features of the present invention have been expressly
described herein, other combinations of these features and
functions are likewise possible. The present invention is not

US 9,456,035 B2

65

limited by the particular examples disclosed herein and
expressly incorporates these other combinations.

What is claimed is:

1. A method for execution by one or more processing
modules of one or more computing devices of a dispersed
storage network (DSN), the method comprises:

generating, by each of a group of write requesting mod-
ules of the DSN, one or more sets of write requests
regarding one of a group of portions of related data,
wherein a write request of the one or more sets of write
requests includes an encoded data slice and information
indicating that the write request corresponds to a por-
tion of the group of portions of the related data, and
wherein a data segment of the portion of the group of
portions of the related data is encoded to produce a set
of encoded data slices, which includes the encoded data
slice;

sending, by the group of write requesting modules, a
group of the one or more sets of write requests to DSN
memory of the DSN;

sending, by the group of write requesting modules, bind-
ing information to a binding module of the DSN;

processing, by the binding module, remaining phases of
the group of the one or more sets of write requests for
writing the related data into the DSN memory as a
single set of write requests; and

notifying, by the binding module, the write requesting
modules of status of the writing the related data into the
DSN memory at completion of the processing of the
remaining phases such that, while the related data is
written into the DSN memory in pieces over time as
groups of portions, the related data is made accessible
as a single piece of data when the processing of the
remaining phases is successful and, when the process-
ing of the remaining phases is not successful, none of
the pieces of the related data are accessible.

2. The method of claim 1 further comprises:

determining, by the group of write requesting modules,
that data objects are related to produce the related data.

3. The method of claim 2, wherein the determining
comprises at least one of:

receiving a command to relate the data objects into the
related data;

identifying a common source of the data objects;

receiving the data objects concurrently within a given
time frame;

identifying a common data type of the data objects; and

interpreting metadata of the data objects.

4. The method of claim 1, wherein the information
indicating that the write request corresponds to the portion
of the group of portions of the related data comprises:

a field within the write request to indicate one or more of:
the write request corresponds to the related data, a total
number of sets of write requests regarding the related
data, a current number of a set of the sets of write
requests regarding the related data, a size of the related
data, and an identifier of the binding module.

5. The method of claim 1, wherein the processing the

remaining phases by the binding module comprises:
when a favorable response to the group of the one or more
sets of write requests is received:
generating, by the binding module, a set of write
commit requests for the group of portions of the
related data; and

sending, by the binding module, the set of write commit
requests to the DSN memory; and

20

30

40

45

55

60

66

when the favorable response to the group of the one or
more sets of write requests is not received:
generating, by the binding module, a set of write
rollback requests for the group of portions of the
related data;
sending, by the binding module, the set of write roll-
back requests to the DSN memory; and
notifying, by the binding module, each of the group of
write requesting modules of rollback of the writing
the related data.
6. The method of claim 5, wherein the processing the

remaining phases by the binding module comprises:

when a favorable response to the set of write commit
requests is received:
generating, by the binding module, a set of write
finalize requests for the group of portions of the
related data;
sending, by the binding module, the set of write finalize
requests to the DSN memory; and
notifying, by the binding module, each of the group of
write requesting modules of finalizing of the writing
the related data;
when the favorable response to the set of write commit
requests is not received:
generating, by the binding module, a set of write undo
requests for the group of portions of the related data;
sending, by the binding module, the set of write undo
requests to the DSN memory; and
notifying, by the binding module, each of the group of
write requesting modules of undoing of the writing
the related data.
7. The method of claim 1 further comprises:
interpreting, by storage units of the DSN memory, the
information indicating that the write request corre-
sponds to the portion of the group of portions of the
related data; and
communicating, by the storage units, with the binding
module regarding the processing the remaining phases.
8. The method of claim 1, wherein the binding informa-

tion comprises:

transaction information, wherein the transaction informa-
tion includes, from each of the group of write request-
ing modules, a different transaction number that indi-
cates a separate write operation and an identifier of the
write requesting module.

9. A non-transitory computer readable storage medium

comprises:

a first memory section that stores operational instructs
that, when executed by one or more processing mod-
ules of one or more computing devices of a dispersed
storage network (DSN), causes the one or more com-
puting devices to:
generate one or more sets of write requests regarding
one of a group of portions of related data, wherein a
write request of the one or more sets of write requests
includes an encoded data slice and information indi-
cating that the write request corresponds to a portion
of the group of portions of the related data, and
wherein a data segment of the portion of the group of
portions of the related data is encoded to produce a
set of encoded data slices, which includes the
encoded data slice;

send a group of the one or more sets of write requests
to a DSN memory of the DSN; and

send binding information to a binding module of the
DSN; and

US 9,456,035 B2

67

a second memory section that stores operational instruc-
tions that, when executed by the one or more process-
ing modules of the one or more computing devices of
the DSN, causes the one or more computing devices to:
process remaining phases of the group of the one or
more sets of write requests for writing the related
data into the DSN memory as a single set of write
requests; and

notify write requesting modules of status of the writing
the related data into the DSN memory at completion
of the processing of the remaining phases such that,
while the related data is written into the DSN
memory in pieces over time as groups of portions,
the related data is made accessible as a single piece
of data when the processing of the remaining phases
is successtul and, when the processing of the remain-
ing phases is not successful, none of the pieces of the
related data are accessible.

10. The non-transitory computer readable storage medium
of claim 9 further comprises:

the first memory section stores further operational instruc-
tions that, when executed by the one or more process-
ing modules, causes the one or more computing devices
of the DSN to:
determine that data objects are related to produce the

related data.

11. The non-transitory computer readable storage medium
of claim 10, wherein the one or more processing modules
functions to execute the further operational instructions
stored by the first memory section to cause the one or more
computing devices of the DSN to determine that the data
objects are related by at least one of:

receiving a command to relate the data objects into the
related data;

identifying a common source of the data objects;

receiving the data objects concurrently within a given
time frame;

identifying a common data type of the data objects; and

interpreting metadata of the data objects.

12. The non-transitory computer readable storage medium
of claim 9, wherein the one or more processing modules
functions to execute the operational instructions stored by
the second memory section to cause the one or more
computing devices of the DSN to process the remaining
phases by:

when a favorable response to the group of the one or more
sets of write requests is received:
generating a set of write commit requests for the group

of portions of the related data; and
sending the set of write commit requests to the DSN
memory; and

when the favorable response to the group of the one or
more sets of write requests is not received:
generating a set of write rollback requests for the group

of portions of the related data;

20

35

40

45

50

68

sending the set of write rollback requests to the DSN
memory; and

notifying each of the write requesting modules of
rollback of the writing the related data.
13. The non-transitory computer readable storage medium
of claim 12, wherein the one or more processing modules
functions to execute the operational instructions stored by
the second memory section to cause the one or more
computing devices of the DSN to process the remaining
phases by:
when a favorable response to the set of write commit
requests is received:
generating a set of write finalize requests for the group
of portions of the related data;

sending the set of write finalize requests to the DSN
memory; and

notifying each of the write requesting modules of
finalizing of the writing the related data;
when the favorable response to the set of write commit
requests is not received:
generating a set of write undo requests for the group of
portions of the related data;

sending the set of write undo requests to the DSN
memory; and

notifying each of the write requesting modules of
undoing of the writing the related data.
14. The non-transitory computer readable storage medium
of claim 9, wherein the information indicating that the write
request corresponds to the portion of the group of portions
of the related data comprises:
a field within the write request to indicate one or more of:
the write request corresponds to the related data, a total
number of sets of write requests regarding the related
data, a current number of a set of the one or more sets
of write requests regarding the related data, a size of the
related data, and an identifier of the binding module.
15. The non-transitory computer readable storage medium
of claim 9 further comprises:
a third memory section that stores operational instructs
that, when executed by the one or more processing
modules of the one or more computing devices of the
DSN, causes the one or more computing devices to:
interpret the information indicating that the write
request corresponds to the portion of the group of
portions of the related data; and

communicate with the binding module regarding the
processing the remaining phases.

16. The non-transitory computer readable storage medium
of claim 9, wherein the binding information comprises:

transaction information, wherein the transaction informa-
tion includes, from each of the write requesting mod-
ules, a different transaction number that indicates a
separate write operation and an identifier of the write
requesting module.

#* #* #* #* #*

